Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CNS_Fighter88发布了新的文献求助10
刚刚
聪明的青荷完成签到,获得积分10
刚刚
研友_VZG7GZ应助钢笔采纳,获得10
1秒前
亭语完成签到 ,获得积分10
2秒前
3秒前
3秒前
崔凯完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
司空悒完成签到,获得积分0
5秒前
5秒前
22222发布了新的文献求助10
6秒前
美好斓发布了新的文献求助10
6秒前
柚子发布了新的文献求助10
8秒前
口味虾发布了新的文献求助10
8秒前
小刘发布了新的文献求助10
8秒前
任性映秋发布了新的文献求助10
8秒前
10秒前
粥游天下完成签到,获得积分10
10秒前
科研通AI6应助优美的雁丝采纳,获得10
11秒前
hhh发布了新的文献求助10
11秒前
12秒前
12秒前
700w完成签到 ,获得积分0
12秒前
小磊子完成签到,获得积分10
13秒前
荆月竹完成签到,获得积分10
14秒前
ljloveljj关注了科研通微信公众号
15秒前
钢笔发布了新的文献求助10
15秒前
sevenseven完成签到,获得积分10
15秒前
Orange应助小刘采纳,获得10
15秒前
传奇3应助luckyhan采纳,获得10
16秒前
笑点低的语蕊完成签到,获得积分20
16秒前
N1发布了新的文献求助10
17秒前
17秒前
Anima应助物理陈老师采纳,获得10
18秒前
科目三应助平淡映易采纳,获得10
18秒前
完美世界应助果粒程采纳,获得10
18秒前
19秒前
霸气的香菇完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557