Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南汐完成签到,获得积分10
刚刚
forever完成签到,获得积分10
刚刚
大模型应助暖啾啾采纳,获得10
1秒前
无忧小姐发布了新的文献求助10
1秒前
筱筱发布了新的文献求助20
1秒前
听海余温发布了新的文献求助10
1秒前
Hzyyyyyyyyy完成签到,获得积分10
1秒前
ctc完成签到,获得积分10
1秒前
我是老大应助rover采纳,获得10
1秒前
2秒前
2秒前
2秒前
完美世界应助仙人掌采纳,获得10
2秒前
英俊的铭应助内向问寒采纳,获得10
2秒前
生动曼冬发布了新的文献求助10
2秒前
llllp发布了新的文献求助10
2秒前
2秒前
2秒前
浮游应助有梦想的咸鱼采纳,获得10
2秒前
笙默0329完成签到,获得积分10
2秒前
李健的粉丝团团长应助kiwi采纳,获得10
2秒前
Howie发布了新的文献求助10
3秒前
3秒前
qyyyyyyy发布了新的文献求助30
3秒前
小蘑菇应助有梦想的咸鱼采纳,获得10
3秒前
3秒前
顺顺顺完成签到,获得积分10
3秒前
weixiang完成签到,获得积分10
3秒前
烟花应助李键刚采纳,获得10
3秒前
4秒前
852应助jky45采纳,获得10
4秒前
斯文败类应助楠木采纳,获得10
4秒前
星辰大海应助虚幻怜珊采纳,获得10
4秒前
Lucas应助芸沐采纳,获得10
5秒前
CodeCraft应助北林采纳,获得10
5秒前
浮游应助燕知南采纳,获得10
6秒前
6秒前
成羊关注了科研通微信公众号
6秒前
zzzzz发布了新的文献求助10
6秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239544
求助须知:如何正确求助?哪些是违规求助? 4406884
关于积分的说明 13716149
捐赠科研通 4275294
什么是DOI,文献DOI怎么找? 2345993
邀请新用户注册赠送积分活动 1343106
关于科研通互助平台的介绍 1301135