Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静悄悄地麻倒你完成签到 ,获得积分10
刚刚
懵懂的灭男关注了科研通微信公众号
4秒前
可爱的函函应助wxx采纳,获得10
4秒前
所所应助奥一奥采纳,获得10
5秒前
5秒前
6秒前
8秒前
非人非木发布了新的文献求助200
11秒前
不安的嘉懿完成签到 ,获得积分10
11秒前
11秒前
14秒前
15秒前
杳鸢应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得30
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
argon完成签到,获得积分10
16秒前
萨特完成签到,获得积分10
16秒前
四角水发布了新的文献求助10
19秒前
阔达的太阳完成签到,获得积分10
22秒前
务实的又柔完成签到,获得积分10
22秒前
Bressanone发布了新的文献求助10
24秒前
25秒前
nickel完成签到,获得积分10
28秒前
33秒前
丁仪完成签到,获得积分10
33秒前
搜集达人应助--采纳,获得10
34秒前
35秒前
NZH发布了新的文献求助20
36秒前
37秒前
wxx完成签到,获得积分10
38秒前
小火锅发布了新的文献求助10
39秒前
41秒前
41秒前
jj发布了新的文献求助10
43秒前
43秒前
orixero应助快乐的晓刚采纳,获得10
45秒前
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094