Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
散装洋芋完成签到 ,获得积分10
刚刚
愚研丁真发布了新的文献求助20
刚刚
脑洞疼应助Dr.向采纳,获得10
1秒前
ypp发布了新的文献求助10
1秒前
1秒前
Hello应助慢慢漫漫采纳,获得10
2秒前
bkagyin应助矮小的海豚采纳,获得10
2秒前
2秒前
CodeCraft应助孤独的素采纳,获得10
2秒前
科目三应助123采纳,获得10
2秒前
silence完成签到,获得积分10
3秒前
111完成签到,获得积分10
4秒前
布丁完成签到,获得积分10
4秒前
晓先森完成签到,获得积分10
4秒前
名取周一完成签到,获得积分10
4秒前
4秒前
大方凌丝发布了新的文献求助10
4秒前
姜昕完成签到,获得积分10
4秒前
kkk发布了新的文献求助10
5秒前
为什么发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
chelsea完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
清欢渡完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
hhh完成签到,获得积分10
7秒前
舍予发布了新的文献求助50
7秒前
隐形曼青应助JoaquinH采纳,获得10
7秒前
charllar完成签到,获得积分10
8秒前
诚心雁凡发布了新的文献求助10
9秒前
小凯同学完成签到,获得积分10
9秒前
幻梦发布了新的文献求助10
9秒前
雯雯完成签到,获得积分10
10秒前
简单的惋庭完成签到 ,获得积分10
10秒前
慧慧完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744