Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四天垂发布了新的文献求助10
刚刚
zhn应助咔嚓咔嚓采纳,获得10
1秒前
ss完成签到,获得积分10
1秒前
LiuYinglong完成签到,获得积分20
2秒前
ren发布了新的文献求助10
2秒前
科研通AI5应助吴可佳采纳,获得10
2秒前
传奇3应助zzzz采纳,获得10
2秒前
2秒前
3秒前
花笙完成签到,获得积分10
3秒前
3秒前
4秒前
嘉轩2548关注了科研通微信公众号
4秒前
冷酷愚志完成签到,获得积分10
4秒前
5秒前
无花果应助ss采纳,获得10
5秒前
矮冬瓜完成签到 ,获得积分10
6秒前
JamesPei应助lcj1014采纳,获得10
6秒前
科研小蚂蚁完成签到,获得积分10
6秒前
6秒前
gyx发布了新的文献求助10
7秒前
共享精神应助dirtbrave采纳,获得10
7秒前
8秒前
8秒前
MZ关闭了MZ文献求助
8秒前
8秒前
8秒前
胡强发布了新的文献求助10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
biopig应助廖少跑不快采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得20
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
10秒前
wanna发布了新的文献求助10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989850
求助须知:如何正确求助?哪些是违规求助? 4239032
关于积分的说明 13205011
捐赠科研通 4033315
什么是DOI,文献DOI怎么找? 2206612
邀请新用户注册赠送积分活动 1217835
关于科研通互助平台的介绍 1135999