Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shen5920完成签到,获得积分10
刚刚
1秒前
1秒前
悲凉的强炫完成签到,获得积分10
2秒前
茉莉是个饱饱完成签到,获得积分10
3秒前
ljhtxf发布了新的文献求助10
5秒前
CodeCraft应助风清扬采纳,获得10
5秒前
深情安青应助wjx采纳,获得20
5秒前
6秒前
群山发布了新的文献求助10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
咩咩应助zweq采纳,获得10
8秒前
欢呼妙菱发布了新的文献求助10
8秒前
9秒前
Ting发布了新的文献求助10
9秒前
9秒前
meng完成签到 ,获得积分10
10秒前
xxxgoldxsx完成签到,获得积分10
11秒前
wd发布了新的文献求助10
11秒前
简单发布了新的文献求助10
11秒前
ZSZ完成签到,获得积分10
12秒前
蒹葭萋萋发布了新的文献求助30
12秒前
domingo完成签到,获得积分10
12秒前
12秒前
愉快的依霜完成签到 ,获得积分10
13秒前
14秒前
11完成签到,获得积分10
15秒前
lili发布了新的文献求助10
15秒前
田様应助山君采纳,获得10
19秒前
23秒前
打打应助kylie采纳,获得10
23秒前
馆长应助11采纳,获得20
23秒前
舒服的安卉关注了科研通微信公众号
23秒前
搜集达人应助maud采纳,获得30
25秒前
26秒前
27秒前
有魅力的沧海完成签到 ,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601124
求助须知:如何正确求助?哪些是违规求助? 4010920
关于积分的说明 12418075
捐赠科研通 3690904
什么是DOI,文献DOI怎么找? 2034732
邀请新用户注册赠送积分活动 1068013
科研通“疑难数据库(出版商)”最低求助积分说明 952626