Integrated Decision and Control: Toward Interpretable and Computationally Efficient Driving Intelligence

可解释性 计算机科学 强化学习 解算器 适应性 运动规划 路径(计算) 计算 人工智能 机器学习 数学优化 机器人 算法 数学 生物 程序设计语言 生态学
作者
Yang Guan,Yangang Ren,Qi Sun,Shengbo Eben Li,Haitong Ma,Jingliang Duan,Yifan Dai,Bo Cheng
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (2): 859-873 被引量:34
标识
DOI:10.1109/tcyb.2022.3163816
摘要

Decision and control are core functionalities of high-level automated vehicles. Current mainstream methods, such as functional decomposition and end-to-end reinforcement learning (RL), suffer high time complexity or poor interpretability and adaptability on real-world autonomous driving tasks. In this article, we present an interpretable and computationally efficient framework called integrated decision and control (IDC) for automated vehicles, which decomposes the driving task into static path planning and dynamic optimal tracking that are structured hierarchically. First, the static path planning generates several candidate paths only considering static traffic elements. Then, the dynamic optimal tracking is designed to track the optimal path while considering the dynamic obstacles. To that end, we formulate a constrained optimal control problem (OCP) for each candidate path, optimize them separately, and follow the one with the best tracking performance. To unload the heavy online computation, we propose a model-based RL algorithm that can be served as an approximate-constrained OCP solver. Specifically, the OCPs for all paths are considered together to construct a single complete RL problem and then solved offline in the form of value and policy networks for real-time online path selecting and tracking, respectively. We verify our framework in both simulations and the real world. Results show that compared with baseline methods, IDC has an order of magnitude higher online computing efficiency, as well as better driving performance, including traffic efficiency and safety. In addition, it yields great interpretability and adaptability among different driving scenarios and tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒹葭发布了新的文献求助10
刚刚
御风发布了新的文献求助10
1秒前
饼子完成签到 ,获得积分10
1秒前
好好好发布了新的文献求助10
1秒前
1秒前
路人发布了新的文献求助30
1秒前
1秒前
科目三应助顾建瑜采纳,获得10
1秒前
个性的曼卉关注了科研通微信公众号
2秒前
东东发布了新的文献求助10
2秒前
3秒前
汉堡包发布了新的文献求助10
4秒前
Orange应助LIULIYUAN采纳,获得30
4秒前
5秒前
彭于晏应助gong采纳,获得10
5秒前
kity发布了新的文献求助10
5秒前
科研通AI6应助万古采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
wanci应助大宁采纳,获得10
7秒前
田様应助asdf采纳,获得10
8秒前
Lucas应助糊涂的雪枫采纳,获得10
8秒前
怕黑凤妖完成签到 ,获得积分10
8秒前
pylchm完成签到,获得积分10
9秒前
徐涵完成签到 ,获得积分10
9秒前
科研通AI6应助高玉峰采纳,获得10
9秒前
11发布了新的文献求助10
11秒前
SciGPT应助GoldenLee采纳,获得10
12秒前
Yan完成签到,获得积分10
12秒前
科研通AI6应助fcyyc采纳,获得10
12秒前
Unshouable完成签到,获得积分10
12秒前
13秒前
畅快的觅风完成签到,获得积分20
13秒前
不呐呐完成签到,获得积分10
14秒前
洁净不评完成签到,获得积分10
14秒前
15秒前
15秒前
chen完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781