Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods

可解释性 机器学习 偏最小二乘回归 计算机科学 超参数优化 人工智能 集成学习 超参数 遗传程序设计 支持向量机
作者
Kai‐Hua Liu,Jiakai Zheng,F. Pacheco-Torgal,Xinyu Zhao
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:337: 127613-127613 被引量:15
标识
DOI:10.1016/j.conbuildmat.2022.127613
摘要

This study investigates the feasibility of introducing machine learning algorithms to predict the diffusion resistance to chloride penetration of recycled aggregate concrete (RAC). A total of 226 samples collated from published literature were used to train and test the developed machine learning framework, which integrated four standalone models and two ensemble models. The hyperparameters involved were fine-tuned by grid search and 10-fold cross-validation. Results showed that all the models had good performance in predicting the chloride penetration resistance of RAC and among them, the gradient boosting model outperformed the others. The water content was identified as the most critical factor affecting the chloride ion permeability of RAC based on the standardized regression coefficient analysis. The model’s interpretability was greatly improved through a two-way partial dependence analysis. Finally, based on the proposed machine learning models, a performance-based mixture design method and a service life prediction approach for RAC were developed, thereby offering novel and robust design tools for achieving more durable and resilient development goals in procuring sustainable concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小泥娃完成签到 ,获得积分10
刚刚
2秒前
Dainlyn完成签到,获得积分10
2秒前
3秒前
3秒前
研友_LNMmW8发布了新的文献求助30
4秒前
风逝关注了科研通微信公众号
5秒前
小郑完成签到,获得积分10
6秒前
逗逗发布了新的文献求助10
6秒前
Leo完成签到,获得积分10
7秒前
zhan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
CyrusSo524应助奥利给采纳,获得10
8秒前
科研潜水发布了新的文献求助10
9秒前
科研达人发布了新的文献求助10
10秒前
祁i应助1WSQARFGRDSX采纳,获得10
13秒前
uniquellll发布了新的文献求助10
15秒前
Owen应助九思采纳,获得10
15秒前
张雯思发布了新的文献求助10
15秒前
突突突完成签到,获得积分10
15秒前
17秒前
17秒前
逗逗完成签到,获得积分10
17秒前
18秒前
18秒前
可爱的函函应助rita_sun1969采纳,获得30
18秒前
CodeCraft应助诚心尔琴采纳,获得10
19秒前
32完成签到,获得积分10
19秒前
19秒前
19秒前
张雯思发布了新的文献求助10
19秒前
张雯思发布了新的文献求助10
19秒前
张雯思发布了新的文献求助10
19秒前
hf发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028