Detection of heavy metals in vegetable soil based on THz spectroscopy

土壤水分 污染 重金属 反向传播 土工试验 均方误差 环境科学 光谱学 环境化学 分析化学(期刊) 材料科学 土壤科学 化学 人工神经网络 数学 机器学习 冶金 统计 计算机科学 物理 生物 量子力学 生态学
作者
Wei Lü,Hui Luo,Linxuan He,Wenxuan Duan,Yilin Tao,Xinyi Wang,Shuaishuai Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106923-106923 被引量:23
标识
DOI:10.1016/j.compag.2022.106923
摘要

Heavy metal pollution in soil endangers food safety and human health. Thus, it is important to study accurate and rapid detection methods. Here, an efficient nondestructive detection method for mercury (Hg), cadmium (Cd) and copper (Cu) in soils was studied by terahertz (THz) spectroscopy. First, regression equations were established between heavy metal contents and absorption coefficients at the selected frequency points. Then, the pollution type and pollution level of the soils containing three heavy metals were detected at the same time. Reference blank soil was also tested. Probabilistic neural network (PNN) and random forest (RF) models verified the effects of qualitative detection. Next, the contents of the three heavy metals in soils were predicted simultaneously by a backpropagation neural network (BPNN) and an extreme learning machine (ELM). The results showed that the absorption coefficients increased regularly in the THz spectral range from 0.05 THz to 0.7 THz. The average detection result of the PNN model was better than that of RF. The average detection accuracy for heavy metal pollution level and type were all higher than 95%. In addition, the prediction results of heavy metal content showed that BPNN model has better prediction performance. The optimal decision coefficients (DC) of BPNN model for soils containing three heavy metals were 0.95, 0.99 and 0.98, respectively, and their corresponding root mean square errors (RMSE) were 0.37, 0.02 and 2.62, respectively. The results proved that THz spectroscopy has good qualitative and quantitative detection ability for soils contaminated with Hg, Cd and Cu, which could bring new opportunities for detection of heavy metal pollutants in soil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梓铭发布了新的文献求助10
刚刚
机灵魂幽发布了新的文献求助10
刚刚
十三应助文刀采纳,获得10
1秒前
超人完成签到,获得积分10
1秒前
卷儿w发布了新的文献求助30
1秒前
小强呐完成签到 ,获得积分10
1秒前
情怀应助夏天的倒影采纳,获得10
2秒前
浮游应助Galaxy8采纳,获得10
2秒前
MR_芝欧完成签到,获得积分10
2秒前
李健的粉丝团团长应助Yang采纳,获得10
2秒前
Hello应助axuan采纳,获得10
2秒前
斯文败类应助三岁半采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
赘婿应助杜晓慧采纳,获得10
4秒前
脑洞疼应助ln1111采纳,获得10
4秒前
5秒前
6秒前
7秒前
mimimi完成签到,获得积分10
7秒前
cyj发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
时舒发布了新的文献求助30
9秒前
ankey完成签到,获得积分10
9秒前
10秒前
一定accept完成签到 ,获得积分10
10秒前
顾矜应助木子采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
大个应助dongtan采纳,获得10
12秒前
Yang完成签到,获得积分10
12秒前
jc发布了新的文献求助10
12秒前
科研通AI6应助坦率灵槐采纳,获得10
12秒前
12秒前
Danboard发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
神说要有光完成签到 ,获得积分10
14秒前
浮游应助Galaxy8采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914