Detection of heavy metals in vegetable soil based on THz spectroscopy

土壤水分 污染 重金属 反向传播 土工试验 均方误差 环境科学 光谱学 环境化学 分析化学(期刊) 材料科学 土壤科学 化学 人工神经网络 数学 机器学习 冶金 统计 计算机科学 物理 生物 量子力学 生态学
作者
Wei Lü,Hui Luo,Linxuan He,Wenxuan Duan,Yilin Tao,Xinyi Wang,Shuaishuai Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106923-106923 被引量:23
标识
DOI:10.1016/j.compag.2022.106923
摘要

Heavy metal pollution in soil endangers food safety and human health. Thus, it is important to study accurate and rapid detection methods. Here, an efficient nondestructive detection method for mercury (Hg), cadmium (Cd) and copper (Cu) in soils was studied by terahertz (THz) spectroscopy. First, regression equations were established between heavy metal contents and absorption coefficients at the selected frequency points. Then, the pollution type and pollution level of the soils containing three heavy metals were detected at the same time. Reference blank soil was also tested. Probabilistic neural network (PNN) and random forest (RF) models verified the effects of qualitative detection. Next, the contents of the three heavy metals in soils were predicted simultaneously by a backpropagation neural network (BPNN) and an extreme learning machine (ELM). The results showed that the absorption coefficients increased regularly in the THz spectral range from 0.05 THz to 0.7 THz. The average detection result of the PNN model was better than that of RF. The average detection accuracy for heavy metal pollution level and type were all higher than 95%. In addition, the prediction results of heavy metal content showed that BPNN model has better prediction performance. The optimal decision coefficients (DC) of BPNN model for soils containing three heavy metals were 0.95, 0.99 and 0.98, respectively, and their corresponding root mean square errors (RMSE) were 0.37, 0.02 and 2.62, respectively. The results proved that THz spectroscopy has good qualitative and quantitative detection ability for soils contaminated with Hg, Cd and Cu, which could bring new opportunities for detection of heavy metal pollutants in soil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hetao286发布了新的文献求助10
刚刚
zzc完成签到 ,获得积分10
刚刚
蔺建薇完成签到,获得积分10
刚刚
whatever举报求助违规成功
刚刚
Hungrylunch举报求助违规成功
刚刚
幕帆举报求助违规成功
刚刚
刚刚
刚刚
lanjq兰坚强完成签到,获得积分10
刚刚
夏昼关注了科研通微信公众号
1秒前
1秒前
RONG发布了新的文献求助10
1秒前
艺玲发布了新的文献求助10
1秒前
核桃发布了新的文献求助10
1秒前
橘络完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
研友_VZG7GZ应助gaos采纳,获得10
2秒前
内向青文发布了新的文献求助10
2秒前
克林沙星完成签到,获得积分10
2秒前
3秒前
杜嘟嘟发布了新的文献求助10
3秒前
kento驳回了欢欢应助
3秒前
4秒前
Ava应助李双艳采纳,获得10
4秒前
wfy1227完成签到,获得积分10
4秒前
Nefelibata完成签到,获得积分10
4秒前
搜集达人应助Elaine采纳,获得10
4秒前
舒适念真发布了新的文献求助10
5秒前
Clean发布了新的文献求助10
5秒前
5秒前
佰斯特威发布了新的文献求助10
5秒前
gms完成签到,获得积分10
5秒前
大力的含卉完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
6秒前
机灵又蓝完成签到 ,获得积分10
6秒前
xiaxiao应助旧梦如烟采纳,获得100
6秒前
111发布了新的文献求助10
6秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740