已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Fingerprint-Based Localization Scheme Using CSI Images for Internet of Things

指纹(计算) 计算机科学 人工智能 指纹识别 方案(数学) 计算机视觉 互联网 模式识别(心理学) 数据挖掘 数学 万维网 数学分析
作者
Xiaoqiang Zhu,Wenyu Qu,Xiaobo Zhou,Laiping Zhao,Zhaolong Ning,Tie Qiu
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2378-2391 被引量:10
标识
DOI:10.1109/tnse.2022.3163358
摘要

Fingerprint-based indoor localization methods have become an important technology because of their wide availability, low hardware costs, and the rapidly growing demand for location-based services. However, it is low precision of positioning and time-consuming for retraining the model when the fingerprint database has changed with new input samples. In this paper, we propose a novel intelligence localization scheme utilizing incremental learning without retraining models based on channel state information (CSI), namely ILCL. CSI phase data are extracted through a modified device driver, and we convert them into CSI images, which are the input to a convolutional neural network for training the weights in the offline stage. The estimated location is obtained by a probabilistic method based on a broad learning system (BLS) that can continue to train rapidly on new input data in the online stage. The ILCL architecture can be characterized as "deep" and "broad" and can further extract features. Experimental results confirm the superiority of ILCL compared with five existing algorithms in two real-world indoor environments with a total area is over 200 ${m}^{2}$ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Eugene采纳,获得10
3秒前
科研通AI2S应助忧心的飞雪采纳,获得10
7秒前
kkkkr完成签到 ,获得积分10
9秒前
10秒前
12秒前
RenatoCai完成签到 ,获得积分10
12秒前
joy完成签到 ,获得积分10
13秒前
13秒前
zho发布了新的文献求助10
14秒前
程笑笑完成签到 ,获得积分10
17秒前
accept发布了新的文献求助10
17秒前
20秒前
今后应助科研通管家采纳,获得10
21秒前
21秒前
yuyuyuyu应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
wanci应助joy采纳,获得10
25秒前
动听靖完成签到,获得积分10
29秒前
shizifengl完成签到,获得积分10
31秒前
wyf发布了新的文献求助10
32秒前
李健应助动听靖采纳,获得30
34秒前
洛洛大方完成签到,获得积分10
37秒前
39秒前
cc发布了新的文献求助10
39秒前
AAA下水工王哥完成签到,获得积分10
40秒前
40秒前
ljy阿完成签到 ,获得积分10
40秒前
42秒前
故意的秋烟完成签到,获得积分10
42秒前
在水一方应助xiu-er采纳,获得10
43秒前
44秒前
清晨牛发布了新的文献求助10
44秒前
GuGuGaGaAH完成签到 ,获得积分10
44秒前
洛洛大方发布了新的文献求助10
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733271
求助须知:如何正确求助?哪些是违规求助? 3277434
关于积分的说明 10002612
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780555
科研通“疑难数据库(出版商)”最低求助积分说明 748892