Detection of trace volatile organic compounds in spiked breath samples: a leap towards breathomics

材料科学 聚苯乙烯 聚合物 丙酮 挥发性有机化合物 甲醇 异丙醇 甲苯 辛烷值 分子印迹聚合物 化学工程 纳米颗粒 选择性 有机化学 纳米技术 化学 复合材料 催化作用 工程类
作者
Bishakha Ray,Saurabh Parmar,Varsha Vijayan,Satyendra Vishwakarma,Suwarna Datar
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:33 (20): 205505-205505 被引量:6
标识
DOI:10.1088/1361-6528/ac4c5e
摘要

Breathomics is the future of non-invasive point-of-care devices. The field of breathomics can be split into the isolation of disease-specific volatile organic compounds (VOCs) and their detection. In the present work, an array of five quartz tuning fork (QTF)-based sensors modified by polymer with nanomaterial additive has been utilized. The array has been used to detect samples of human breath spiked with ∼0.5 ppm of known VOCs namely, acetone, acetaldehyde, octane, decane, ethanol, methanol, styrene, propylbenzene, cyclohexanone, butanediol, and isopropyl alcohol which are bio-markers for certain diseases. Polystyrene was used as the base polymer and it was functionalized with 4 different fillers namely, silver nanoparticles-reduced graphene oxide composite, titanium dioxide nanoparticles, zinc ferrite nanoparticles-reduced graphene oxide composite, and cellulose acetate. Each of these fillers enhanced the selectivity of a particular sensor towards a certain VOC compared to the pristine polystyrene-modified sensor. Their interaction with the VOCs in changing the mechanical properties of polymer giving rise to change in the resonant frequency of QTF is used as sensor response for detection. The interaction of functionalized polymers with VOCs was analyzed by FTIR and UV-vis spectroscopy. The collective sensor response of five sensors is used to identify VOCs using an ensemble classifier with 92.8% accuracy of prediction. The accuracy of prediction improved to 96% when isopropyl alcohol, ethanol, and methanol were considered as one class.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xing发布了新的文献求助10
1秒前
语小完成签到,获得积分10
1秒前
1秒前
玖熙发布了新的文献求助10
2秒前
3秒前
Vincent完成签到,获得积分10
3秒前
3秒前
trumning应助细心的尔岚采纳,获得10
3秒前
Mingle完成签到,获得积分10
3秒前
李永正完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
杨蒙发布了新的文献求助10
4秒前
4秒前
wanxiaowan发布了新的文献求助10
4秒前
一一发布了新的文献求助10
4秒前
ding应助章德仁采纳,获得10
5秒前
highmoon发布了新的文献求助10
5秒前
彭于晏应助夏小胖采纳,获得10
6秒前
瓜皮糖浆发布了新的文献求助10
6秒前
科研通AI2S应助maqedd采纳,获得10
6秒前
吕布发布了新的文献求助10
7秒前
7秒前
科目三应助乐观小之采纳,获得10
7秒前
甜美无剑应助boltos采纳,获得10
8秒前
Leo发布了新的文献求助10
8秒前
清淮发布了新的文献求助10
8秒前
乐唔完成签到,获得积分10
8秒前
桐桐应助老迟到的冰海采纳,获得30
8秒前
8秒前
8秒前
una发布了新的文献求助10
8秒前
巴旦木发布了新的文献求助10
8秒前
ding应助研友_LMBAXn采纳,获得10
9秒前
9秒前
ZZC10完成签到,获得积分10
9秒前
10秒前
黑羊完成签到,获得积分10
10秒前
自律的王一博完成签到,获得积分10
11秒前
Akim应助ale采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406