The purpose of this study was to isolate and characterise the ordinary heterotrophic organisms (OHOs) present in a NDBEPR system in order to gain a better understanding of the organisms involved in denitrification as well as a more holistic and accurate evaluation of the OHO fraction attributable to denitrification in such a system. Heterotrophic bacteria were isolated from the pre- and secondary anoxic zones of the Darvill NDBEPR process and characterised according to their ability to reduce nitrates and/or nitrites under anoxic conditions. Results showed that the OHO fraction is more complex than currently accepted and, with respect to denitrification, can be more accurately subdivided into five functional groups, four of which interactively contribute to denitrification occurring in the system and one group that are non-denitrifying. These groups were defined as true denitrifiers (bacteria capable of both nitrate and nitrite reduction), incomplete denitrifiers (bacteria that reduced nitrates to nitrites with no further reduction of the nitrites produced), incomplete-nitrite reducers (bacteria capable of both nitrate and nitrite reduction, however, exhibiting severe inhibition of nitrite reduction by nitrates), exclusive nitrite reducers (bacteria only capable of reducing nitrites) and non-denitrifiers (bacteria not capable of nitrate or nitrite reduction).