Optimization of Characteristic Wavelengths in Prediction of Lycopene in Tomatoes Using Near‐Infrared Spectroscopy

偏最小二乘回归 番茄红素 数学 均方误差 稳健性(进化) 变量消去 近红外光谱 回归分析 统计 相关系数 线性回归 决定系数 化学 计算机科学 人工智能 光学 类胡萝卜素 物理 食品科学 生物化学 推论 基因
作者
Tianhua Li,Chongzhe Zhong,Lou Wei,Min Wei,Jialin Hou
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:40 (1) 被引量:11
标识
DOI:10.1111/jfpe.12266
摘要

Abstract To improve the predictive ability and robustness of the near‐infrared correction model and to simplify the model, the backward interval partial least squares, the synergy interval partial least squares, the uninformative variable elimination partial least squares and the genetic algorithm partial least square ( GA‐PLS ) methods were used to select the characteristic wavelengths in the prediction of lycopene in tomatoes. The optimal characteristic variables and regression model were determined by the model evaluation parameters. The best model was set up using the GA‐PLS method. Compared with the model based on the full spectra, the variables used were reduced from 1,816 to 142, the correlation coefficient increased from 0.7104 to 0.9072, the root mean square errors of cross‐validation and prediction decreased from 21.58 to 8.76 and from 22.03 to 8.93, respectively. The experimental results showed that the use of GA‐PLS method, in the selection of characteristic variables of tomato lycopene, could effectively reduce the number of variables, decrease model complexity and improve the predictive precision. Practical Applications Using near‐infrared spectroscopy could quickly detect the lycopene contents of tomatoes. By extracting spectra characteristic wavelengths, it could reduce the irrelevant information variables and improve the accuracy of measurement of lycopene in tomatoes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FANGQUAN完成签到,获得积分10
2秒前
2秒前
4秒前
11完成签到 ,获得积分10
4秒前
4秒前
yangl完成签到 ,获得积分10
4秒前
墨痕发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
ding应助hull采纳,获得30
6秒前
6秒前
稳重的泽洋完成签到,获得积分10
7秒前
8秒前
FANGQUAN发布了新的文献求助10
8秒前
8秒前
9秒前
可爱千兰发布了新的文献求助10
9秒前
9秒前
隐形星空完成签到,获得积分10
11秒前
cc321发布了新的文献求助10
11秒前
11秒前
蜗牛123发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
利利发布了新的文献求助10
12秒前
支凌瑶发布了新的文献求助10
14秒前
14秒前
彭于晏应助wanz采纳,获得10
15秒前
15秒前
16秒前
liangxue发布了新的文献求助10
16秒前
19秒前
HPP123发布了新的文献求助10
19秒前
20秒前
英俊的铭应助yzizz采纳,获得10
21秒前
21秒前
123发布了新的文献求助10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179