计算机科学
矩阵完成
校准
秩(图论)
笛卡尔坐标系
压缩传感
迭代重建
灵敏度(控制系统)
阈值
基质(化学分析)
投影(关系代数)
小波
算法
人工智能
电磁线圈
奇异值
合成数据
计算机视觉
图像(数学)
数学
统计
物理
几何学
材料科学
特征向量
量子力学
组合数学
电子工程
复合材料
工程类
高斯分布
电气工程
作者
Peter Shin,Peder E. Z. Larson,Michael A. Ohliger,Michael Elad,John M. Pauly,Daniel B. Vigneron,Michael Lustig
摘要
Purpose A calibrationless parallel imaging reconstruction method, termed simultaneous autocalibrating and k-space estimation (SAKE), is presented. It is a data-driven, coil-by-coil reconstruction method that does not require a separate calibration step for estimating coil sensitivity information. Methods In SAKE, an undersampled, multichannel dataset is structured into a single data matrix. The reconstruction is then formulated as a structured low-rank matrix completion problem. An iterative solution that implements a projection-onto-sets algorithm with singular value thresholding is described. Results Reconstruction results are demonstrated for retrospectively and prospectively undersampled, multichannel Cartesian data having no calibration signals. Additionally, non-Cartesian data reconstruction is presented. Finally, improved image quality is demonstrated by combining SAKE with wavelet-based compressed sensing. Conclusion Because estimation of coil sensitivity information is not needed, the proposed method could potentially benefit MR applications where acquiring accurate calibration data is limiting or not possible at all. Magn Reson Med 72:959–970, 2014. © 2013 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI