SMAD公司
转化生长因子
成纤维细胞
肺纤维化
细胞外基质
细胞生物学
纤维化
体内
肺泡巨噬细胞
信号转导
巨噬细胞
化学
体外
材料科学
生物
医学
病理
生物化学
生物技术
作者
Peng Wang,Xin Nie,Yue Wang,Yang Li,Cuicui Ge,Lili Zhang,Liming Wang,Ru Bai,Zhiyun Chen,Yuliang Zhao,Chunying Chen
出处
期刊:Small
[Wiley]
日期:2013-05-06
卷期号:9 (22): 3799-3811
被引量:127
标识
DOI:10.1002/smll.201300607
摘要
Abstract Multiwall carbon nanotubes (MWCNTs) have been widely used in many disciplines due to their unique physical and chemical properties, but have also raised great concerns about their possible negative health impacts, especially through occupational exposure. Although recent studies have demonstrated that MWCNTs induce granuloma formation and/or fibrotic responses in the lungs of rats or mice, their cellular and molecular mechanisms remain largely unaddressed. Here, it is reported that the TGF‐β/Smad signaling pathway can be activated by MWCNTs and play a critical role in MWCNT‐induced pulmonary fibrosis. Firstly, in vivo data show that spontaneously hypertensive (SH) rats administered long MWCNTs (20–50 μm) but not short MWCNTs (0.5–2 μm) exhibit increased fibroblast proliferation, collagen deposition and granuloma formation in lung tissue. Secondly, the in vivo experiments also indicate that only long MWCNTs can significantly activate macrophages and increase the production of transforming growth factor (TGF)‐β1, which induces the phosphorylation of Smad2 and then the expression of collagen I/III and extracellular matrix (ECM) protease inhibitors in lung tissues. Finally, the present in vitro studies further demonstrate that the TGF‐β/Smad signaling pathway is indeed necessary for the expression of collagen III in fibroblast cells. Together, these data demonstrate that MWCNTs stimulate pulmonary fibrotic responses such as fibroblast proliferation and collagen deposition in a TGF‐β/Smad‐dependent manner. These observations also suggest that tube length acts as an important factor in MWCNT‐induced macrophage activation and subsequent TGF‐β1 secretion. These in vivo and in vitro studies further highlight the potential adverse health effects that may occur following MWCNT exposure and provide a better understanding of the cellular and molecular mechanisms by which MWCNTs induce pulmonary fibrotic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI