朗之万方程
朗之万动力
放松(心理学)
对数
动力学(音乐)
聚合物
缩放比例
物理
幂律
统计物理学
扭转
布朗动力学
经典力学
机械
核磁共振
数学分析
数学
布朗运动
量子力学
心理学
统计
几何学
社会心理学
声学
作者
Jean-Charles Walter,Marco Baiesi,G. T. Barkema,Enrico Carlon
标识
DOI:10.1103/physrevlett.110.068301
摘要
The relaxation dynamics of a polymer wound around a fixed obstacle constitutes a fundamental instance of polymer with twist and torque, and it is also of relevance for DNA denaturation dynamics. We investigate it by simulations and Langevin equation analysis. The latter predicts a relaxation time scaling as a power of the polymer length times a logarithmic correction related to the equilibrium fluctuations of the winding angle. The numerical data support this result and show that at short times the winding angle decreases as a power law. This is also in agreement with the Langevin equation provided a winding-dependent friction is used, suggesting that such reduced description of the system captures the basic features of the problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI