Best-Matched Internal Standard Normalization in Liquid Chromatography–Mass Spectrometry Metabolomics Applied to Environmental Samples

化学 色谱法 代谢组学 规范化(社会学) 质谱法 液相色谱-质谱法 分析化学(期刊) 人类学 社会学
作者
Angela K. Boysen,Katherine R. Heal,Laura T. Carlson,Anitra E. Ingalls
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (2): 1363-1369 被引量:90
标识
DOI:10.1021/acs.analchem.7b04400
摘要

The goal of metabolomics is to measure the entire range of small organic molecules in biological samples. In liquid chromatography–mass spectrometry-based metabolomics, formidable analytical challenges remain in removing the nonbiological factors that affect chromatographic peak areas. These factors include sample matrix-induced ion suppression, chromatographic quality, and analytical drift. The combination of these factors is referred to as obscuring variation. Some metabolomics samples can exhibit intense obscuring variation due to matrix-induced ion suppression, rendering large amounts of data unreliable and difficult to interpret. Existing normalization techniques have limited applicability to these sample types. Here we present a data normalization method to minimize the effects of obscuring variation. We normalize peak areas using a batch-specific normalization process, which matches measured metabolites with isotope-labeled internal standards that behave similarly during the analysis. This method, called best-matched internal standard (B-MIS) normalization, can be applied to targeted or untargeted metabolomics data sets and yields relative concentrations. We evaluate and demonstrate the utility of B-MIS normalization using marine environmental samples and laboratory grown cultures of phytoplankton. In untargeted analyses, B-MIS normalization allowed for inclusion of mass features in downstream analyses that would have been considered unreliable without normalization due to obscuring variation. B-MIS normalization for targeted or untargeted metabolomics is freely available at https://github.com/IngallsLabUW/B-MIS-normalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faller关注了科研通微信公众号
刚刚
1秒前
2秒前
zh发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
cdercder应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
JamesPei应助流夏采纳,获得20
5秒前
5秒前
啊莲发布了新的文献求助10
5秒前
HUSTYXY发布了新的文献求助50
5秒前
抹茶肥肠发布了新的文献求助10
5秒前
执城完成签到,获得积分10
6秒前
大模型应助zhouleiwang采纳,获得10
7秒前
听说外面下雨了完成签到,获得积分10
8秒前
搜集达人应助tph采纳,获得10
9秒前
十一发布了新的文献求助10
10秒前
11秒前
飞哥完成签到 ,获得积分10
11秒前
852应助大鱼采纳,获得10
12秒前
听风举火关注了科研通微信公众号
12秒前
wsxdm完成签到,获得积分10
13秒前
13秒前
小马甲应助抹茶肥肠采纳,获得10
13秒前
14秒前
汉堡包应助diraczh采纳,获得10
14秒前
哦吼吼吼吼完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543189
求助须知:如何正确求助?哪些是违规求助? 3120593
关于积分的说明 9343357
捐赠科研通 2818645
什么是DOI,文献DOI怎么找? 1549711
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076