基因传递
转染
活性氧
体内
材料科学
遗传增强
基因沉默
体外
生物相容性
生物化学
生物物理学
分子生物学
基因
化学
生物
遗传学
冶金
作者
Chunhui Ruan,Lisha Liu,Qingbing Wang,Han Y. H. Chen,Qinjun Chen,Yifei Lü,Yu Zhang,Xi He,Yujie Zhang,Qin Guo,Tao Sun,Chen Jiang
标识
DOI:10.1021/acsami.8b01712
摘要
An ideal gene-carrying vector is supposed to exhibit outstanding gene-condensing capability with positively charged macromolecules to protect the carried gene during in vivo circulation and a rapid dissociation upon microenvironmental stimuli at the aimed sites to release the escorted gene. Currently, it still remains a challenge to develop an ideal gene carrier with efficient transfection ability and low toxicity for clinical applications. Herein, we have innovatively introduced a reactive oxygen species (ROS)-biodegradable boric acid ester linkage in elaborating the design of a gene carrier. In virtue of the featured intracellular characteristics such as the high level of ROS in tumor cells, an ROS-biodegradable electropositive polymer derived from branched polyethylenimine (BPEI) with a low molecular weight (1.2k) through a cross-linking reaction by the boric acid ester bond was developed in this study to achieve condensation and escorting of carried genes. Furthermore, the polymer was modified with substance P (SP) peptide as the targeting ligand through polyethylene glycol. The final fabricated SP-cross-linked BPEI/plasmid DNA nanoparticles exhibit favorable biocompatibility, ROS-cleavability, and fine targeting ability as well as high transfection efficiency compared with parental BPEI1.2k both in vitro and in vivo. SP-cross-linked BPEI/small interfering RNA (pololike kinase 1) polyplex possesses favorable gene-silencing effects in vitro and satisfactory antitumor ability in vivo. Hopefully, this novel cross-linked electropositive polymer may serve well as a safe and efficient gene-delivery vehicle in the clinic.
科研通智能强力驱动
Strongly Powered by AbleSci AI