计算机科学
试验台
可扩展性
启发式
任务(项目管理)
复制(统计)
采样(信号处理)
错误检测和纠正
理论计算机科学
分布式计算
算法
计算机工程
人工智能
计算机网络
统计
数学
管理
滤波器(信号处理)
数据库
经济
计算机视觉
作者
Amey Desai,Mina Ghashami,Jeff M. Phillips
标识
DOI:10.1109/tkde.2016.2539943
摘要
Matrices have become essential data representations for many large-scale problems in data analytics, and hence matrix sketching is a critical task. Although much research has focused on improving the error/size tradeoff under various sketching paradigms, the many forms of error bounds make these approaches hard to compare in theory and in practice. This paper attempts to categorize and compare the most known methods under row-wise streaming updates with provable guarantees, and then to tweak some of these methods to gain practical improvements while retaining guarantees. For instance, we observe that a simple heuristic iSVD, with no guarantees, tends to outperform all known approaches in terms of size/error trade-off. We modify the best performing method with guarantees, FREQUENTDIRECTIONS, under the size/error trade-off to match the performance of iSVD and retain its guarantees. We also demonstrate some adversarial datasets where iSVD performs quite poorly. In comparing techniques in the time/error trade-off, techniques based on hashing or sampling tend to perform better. In this setting, we modify the most studied sampling regime to retain error guarantee but obtain dramatic improvements in the time/error trade-off. Finally, we provide easy replication of our studies on APT, a new testbed which makes available not only code and datasets, but also a computing platform with fixed environmental settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI