Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation

归一化差异植被指数 环境科学 草原 遥感 中分辨率成像光谱仪 生物量(生态学) 均方误差 植被(病理学) 空间分布 卫星 叶面积指数 数学 地质学 统计 农学 病理 航空航天工程 工程类 海洋学 生物 医学
作者
Binghua Zhang,Li Zhang,Dong Xie,Xiaoli Yin,Chunjing Liu,Guang Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:8 (1): 10-10 被引量:103
标识
DOI:10.3390/rs8010010
摘要

Accurate monitoring of grassland biomass at high spatial and temporal resolutions is important for the effective utilization of grasslands in ecological and agricultural applications. However, current remote sensing data cannot simultaneously provide accurate monitoring of vegetation changes with fine temporal and spatial resolutions. We used a data-fusion approach, namely the spatial and temporal adaptive reflectance fusion model (STARFM), to generate synthetic normalized difference vegetation index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat data sets. This provided observations at fine temporal (8-d) and medium spatial (30 m) resolutions. Based on field-sampled aboveground biomass (AGB), synthetic NDVI and support vector machine (SVM) techniques were integrated to develop an AGB estimation model (SVM-AGB) for Xilinhot in Inner Mongolia, China. Compared with model generated from MODIS-NDVI (R2 = 0.73, root-mean-square error (RMSE) = 30.61 g/m2), the SVM-AGB model we developed can not only ensure the accuracy of estimation (R2 = 0.77, RMSE = 17.22 g/m2), but also produce higher spatial (30 m) and temporal resolution (8-d) biomass maps. We then generated the time-series biomass to detect biomass anomalies for grassland regions. We found that the synthetic NDVI-derived estimations contained more details on the distribution and severity of vegetation anomalies compared with MODIS NDVI-derived AGB estimations. This is the first time that we have generated time series of grassland biomass with 30-m and 8-d intervals data through combined use of a data-fusion method and the SVM-AGB model. Our study will be useful for near real-time and accurate (improved resolutions) monitoring of grassland conditions, and the data have implications for arid and semi-arid grasslands management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正在获取昵称中...完成签到,获得积分10
1秒前
研白完成签到 ,获得积分10
2秒前
蜜雪冰城完成签到,获得积分10
2秒前
狂歌痛饮空度日完成签到,获得积分10
3秒前
隐形曼青应助侦察兵采纳,获得10
3秒前
欢呼冰岚发布了新的文献求助50
4秒前
陵铛铛铛发布了新的文献求助10
4秒前
搜集达人应助caoyy采纳,获得10
4秒前
YYJ25发布了新的文献求助10
5秒前
勤劳落雁发布了新的文献求助30
6秒前
科研通AI5应助优雅海雪采纳,获得10
6秒前
loulan完成签到,获得积分10
7秒前
orixero应助yyyyy语言采纳,获得10
9秒前
土里刨星星的鱼完成签到,获得积分20
9秒前
Ava应助sun采纳,获得30
11秒前
miss完成签到,获得积分10
12秒前
hu完成签到 ,获得积分10
13秒前
mathmotive完成签到,获得积分10
14秒前
白大褂完成签到,获得积分10
15秒前
15秒前
15秒前
小马甲应助孙淳采纳,获得10
17秒前
17秒前
科研通AI5应助二二二采纳,获得10
17秒前
赘婿应助尘林采纳,获得10
18秒前
HPP123完成签到,获得积分10
20秒前
21秒前
YYJ25发布了新的文献求助10
22秒前
liyuchen发布了新的文献求助10
22秒前
侦察兵发布了新的文献求助10
22秒前
24秒前
Owen应助TT采纳,获得10
24秒前
kid1912发布了新的文献求助50
24秒前
孙淳发布了新的文献求助10
28秒前
29秒前
29秒前
伯赏诗霜发布了新的文献求助10
29秒前
30秒前
30秒前
程哲瀚完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849