Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation

归一化差异植被指数 环境科学 草原 遥感 中分辨率成像光谱仪 生物量(生态学) 均方误差 植被(病理学) 空间分布 卫星 叶面积指数 数学 地质学 统计 农学 医学 海洋学 工程类 病理 航空航天工程 生物
作者
Binghua Zhang,Li Zhang,Dong Xie,Xiaoli Yin,Chunjing Liu,Guang Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:8 (1): 10-10 被引量:103
标识
DOI:10.3390/rs8010010
摘要

Accurate monitoring of grassland biomass at high spatial and temporal resolutions is important for the effective utilization of grasslands in ecological and agricultural applications. However, current remote sensing data cannot simultaneously provide accurate monitoring of vegetation changes with fine temporal and spatial resolutions. We used a data-fusion approach, namely the spatial and temporal adaptive reflectance fusion model (STARFM), to generate synthetic normalized difference vegetation index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat data sets. This provided observations at fine temporal (8-d) and medium spatial (30 m) resolutions. Based on field-sampled aboveground biomass (AGB), synthetic NDVI and support vector machine (SVM) techniques were integrated to develop an AGB estimation model (SVM-AGB) for Xilinhot in Inner Mongolia, China. Compared with model generated from MODIS-NDVI (R2 = 0.73, root-mean-square error (RMSE) = 30.61 g/m2), the SVM-AGB model we developed can not only ensure the accuracy of estimation (R2 = 0.77, RMSE = 17.22 g/m2), but also produce higher spatial (30 m) and temporal resolution (8-d) biomass maps. We then generated the time-series biomass to detect biomass anomalies for grassland regions. We found that the synthetic NDVI-derived estimations contained more details on the distribution and severity of vegetation anomalies compared with MODIS NDVI-derived AGB estimations. This is the first time that we have generated time series of grassland biomass with 30-m and 8-d intervals data through combined use of a data-fusion method and the SVM-AGB model. Our study will be useful for near real-time and accurate (improved resolutions) monitoring of grassland conditions, and the data have implications for arid and semi-arid grasslands management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助明亮的藏花采纳,获得10
刚刚
zyx发布了新的文献求助10
刚刚
ljzhhh完成签到,获得积分10
刚刚
刚刚
科研通AI6应助鳗鱼蛋挞采纳,获得10
1秒前
1秒前
1秒前
共产主义接班人完成签到,获得积分10
1秒前
病猫发布了新的文献求助10
1秒前
2秒前
科研通AI6应助蚂蚁的奋斗采纳,获得10
2秒前
大气乐儿发布了新的文献求助10
2秒前
正直的雁开完成签到,获得积分20
2秒前
所所应助人不犯二枉少年采纳,获得10
2秒前
嗯嗯完成签到,获得积分20
3秒前
勤奋的灯发布了新的文献求助10
4秒前
利好完成签到 ,获得积分10
4秒前
科研通AI6应助ash采纳,获得10
4秒前
打打应助ash采纳,获得10
4秒前
嘻嘻完成签到 ,获得积分10
5秒前
锅嘚硬发布了新的文献求助10
5秒前
拼搏的飞薇完成签到,获得积分10
5秒前
无奈凉面完成签到,获得积分10
6秒前
耳朵儿歌发布了新的文献求助100
6秒前
Proddy完成签到,获得积分10
6秒前
7秒前
大模型应助文静盈采纳,获得10
7秒前
sia完成签到,获得积分10
7秒前
饱满以松发布了新的文献求助10
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
科研通AI6应助洁净的千凡采纳,获得10
8秒前
317完成签到,获得积分10
8秒前
lin完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034