亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation

归一化差异植被指数 环境科学 草原 遥感 中分辨率成像光谱仪 生物量(生态学) 均方误差 植被(病理学) 空间分布 卫星 叶面积指数 数学 地质学 统计 农学 医学 海洋学 工程类 病理 航空航天工程 生物
作者
Binghua Zhang,Li Zhang,Dong Xie,Xiaoli Yin,Chunjing Liu,Guang Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:8 (1): 10-10 被引量:103
标识
DOI:10.3390/rs8010010
摘要

Accurate monitoring of grassland biomass at high spatial and temporal resolutions is important for the effective utilization of grasslands in ecological and agricultural applications. However, current remote sensing data cannot simultaneously provide accurate monitoring of vegetation changes with fine temporal and spatial resolutions. We used a data-fusion approach, namely the spatial and temporal adaptive reflectance fusion model (STARFM), to generate synthetic normalized difference vegetation index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat data sets. This provided observations at fine temporal (8-d) and medium spatial (30 m) resolutions. Based on field-sampled aboveground biomass (AGB), synthetic NDVI and support vector machine (SVM) techniques were integrated to develop an AGB estimation model (SVM-AGB) for Xilinhot in Inner Mongolia, China. Compared with model generated from MODIS-NDVI (R2 = 0.73, root-mean-square error (RMSE) = 30.61 g/m2), the SVM-AGB model we developed can not only ensure the accuracy of estimation (R2 = 0.77, RMSE = 17.22 g/m2), but also produce higher spatial (30 m) and temporal resolution (8-d) biomass maps. We then generated the time-series biomass to detect biomass anomalies for grassland regions. We found that the synthetic NDVI-derived estimations contained more details on the distribution and severity of vegetation anomalies compared with MODIS NDVI-derived AGB estimations. This is the first time that we have generated time series of grassland biomass with 30-m and 8-d intervals data through combined use of a data-fusion method and the SVM-AGB model. Our study will be useful for near real-time and accurate (improved resolutions) monitoring of grassland conditions, and the data have implications for arid and semi-arid grasslands management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33完成签到 ,获得积分10
2秒前
飞常爱你哦完成签到 ,获得积分20
2秒前
斯文败类应助FATFAT采纳,获得10
5秒前
7秒前
7秒前
Dec发布了新的文献求助10
7秒前
xiaoyuyuyu完成签到 ,获得积分10
9秒前
10秒前
matrixu完成签到,获得积分10
14秒前
莫问题完成签到,获得积分10
14秒前
mushroom完成签到 ,获得积分10
17秒前
19秒前
24秒前
搜集达人应助xjz采纳,获得10
25秒前
一休发布了新的文献求助10
26秒前
所所应助科研通管家采纳,获得10
28秒前
28秒前
罗伊黄完成签到,获得积分10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
28秒前
能干的人完成签到,获得积分10
29秒前
小黑完成签到,获得积分10
30秒前
zyq完成签到,获得积分10
33秒前
Jasper应助一休采纳,获得10
35秒前
36秒前
zyq发布了新的文献求助10
39秒前
Emma发布了新的文献求助10
40秒前
友好小土豆完成签到 ,获得积分10
44秒前
46秒前
47秒前
47秒前
51秒前
xjz发布了新的文献求助10
52秒前
明天更好完成签到 ,获得积分10
52秒前
53秒前
呋喃发布了新的文献求助10
53秒前
李健应助Emma采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604