亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation

归一化差异植被指数 环境科学 草原 遥感 中分辨率成像光谱仪 生物量(生态学) 均方误差 植被(病理学) 空间分布 卫星 叶面积指数 数学 地质学 统计 农学 医学 海洋学 工程类 病理 航空航天工程 生物
作者
Binghua Zhang,Li Zhang,Dong Xie,Xiaoli Yin,Chunjing Liu,Guang Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:8 (1): 10-10 被引量:103
标识
DOI:10.3390/rs8010010
摘要

Accurate monitoring of grassland biomass at high spatial and temporal resolutions is important for the effective utilization of grasslands in ecological and agricultural applications. However, current remote sensing data cannot simultaneously provide accurate monitoring of vegetation changes with fine temporal and spatial resolutions. We used a data-fusion approach, namely the spatial and temporal adaptive reflectance fusion model (STARFM), to generate synthetic normalized difference vegetation index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat data sets. This provided observations at fine temporal (8-d) and medium spatial (30 m) resolutions. Based on field-sampled aboveground biomass (AGB), synthetic NDVI and support vector machine (SVM) techniques were integrated to develop an AGB estimation model (SVM-AGB) for Xilinhot in Inner Mongolia, China. Compared with model generated from MODIS-NDVI (R2 = 0.73, root-mean-square error (RMSE) = 30.61 g/m2), the SVM-AGB model we developed can not only ensure the accuracy of estimation (R2 = 0.77, RMSE = 17.22 g/m2), but also produce higher spatial (30 m) and temporal resolution (8-d) biomass maps. We then generated the time-series biomass to detect biomass anomalies for grassland regions. We found that the synthetic NDVI-derived estimations contained more details on the distribution and severity of vegetation anomalies compared with MODIS NDVI-derived AGB estimations. This is the first time that we have generated time series of grassland biomass with 30-m and 8-d intervals data through combined use of a data-fusion method and the SVM-AGB model. Our study will be useful for near real-time and accurate (improved resolutions) monitoring of grassland conditions, and the data have implications for arid and semi-arid grasslands management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
xiazeyan完成签到,获得积分10
27秒前
嘻嘻哈哈应助AliEmbark采纳,获得10
1分钟前
猪仔5号发布了新的文献求助10
1分钟前
AliEmbark完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
sjyu1985完成签到 ,获得积分10
3分钟前
hua完成签到,获得积分10
3分钟前
hua发布了新的文献求助10
3分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
猪仔5号发布了新的文献求助10
5分钟前
乐正怡完成签到 ,获得积分0
5分钟前
酷波er应助忐忑的黄豆采纳,获得10
6分钟前
小石头完成签到 ,获得积分10
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
吴静完成签到 ,获得积分10
6分钟前
Percy完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
7分钟前
猪仔5号发布了新的文献求助10
8分钟前
8分钟前
俊逸的若魔完成签到 ,获得积分10
8分钟前
U87完成签到,获得积分10
8分钟前
9分钟前
小蘑菇应助郡邑采纳,获得10
10分钟前
zsmj23完成签到 ,获得积分0
10分钟前
科研通AI2S应助谨慎建辉采纳,获得10
11分钟前
这学真难读下去完成签到,获得积分10
11分钟前
yanzilin完成签到 ,获得积分10
11分钟前
猪仔5号发布了新的文献求助10
11分钟前
谨慎建辉完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302944
求助须知:如何正确求助?哪些是违规求助? 4449985
关于积分的说明 13848855
捐赠科研通 4336308
什么是DOI,文献DOI怎么找? 2380906
邀请新用户注册赠送积分活动 1375846
关于科研通互助平台的介绍 1342239