How Accurate Are the Fusion of Cone-Beam CT and 3-D Stereophotographic Images?

锥束ct 叠加 人工智能 均方误差 核医学 颅面 数学 计算机科学 医学 计算机视觉 计算机断层摄影术 放射科 统计 精神科
作者
Yasas S. N. Jayaratne,Colman McGrath,Roger A. Zwahlen
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:7 (11): e49585-e49585 被引量:54
标识
DOI:10.1371/journal.pone.0049585
摘要

Cone-beam Computed Tomography (CBCT) and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D) visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1) to evaluate the feasibility of integrating 3-D Photos and CBCT images 2) to assess degree of error that may occur during the above processes and 3) to identify facial regions that would be most appropriate for 3-D image registration.CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS) error.The signed average and RMS of the distance differences between the registered surfaces were -0.018 (±0.129) mm and 0.739 (±0.239) mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma.CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123lura发布了新的文献求助10
1秒前
虚幻百川应助虚心的静枫采纳,获得10
1秒前
ccepted1122发布了新的文献求助30
1秒前
慕青应助正直海之采纳,获得10
1秒前
张锐斌发布了新的文献求助10
1秒前
1秒前
顾矜应助兴奋的雪糕采纳,获得10
2秒前
2秒前
2秒前
CodeCraft应助xny采纳,获得10
2秒前
xiaojiahuo发布了新的文献求助10
2秒前
wxxz发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
包容春天发布了新的文献求助10
3秒前
4秒前
ding应助神勇绮烟采纳,获得10
4秒前
AyraN完成签到,获得积分10
4秒前
哈哈哈发布了新的文献求助10
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
Zzz发布了新的文献求助20
5秒前
gudujian870928完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助ira采纳,获得10
5秒前
一念之间发布了新的文献求助10
5秒前
君叁叁发布了新的文献求助10
6秒前
Akun发布了新的文献求助20
6秒前
6秒前
6秒前
123lura完成签到,获得积分10
6秒前
所所应助科研人采纳,获得10
7秒前
Ava应助lily采纳,获得10
7秒前
天涯过客完成签到,获得积分10
7秒前
阿松大发布了新的文献求助10
7秒前
情怀应助张锐斌采纳,获得10
8秒前
8秒前
正直海之完成签到,获得积分10
8秒前
FashionBoy应助c14在读文献采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017