鲁米诺
电化学发光
纳米化学
检出限
石墨烯
材料科学
纳米技术
纳米复合材料
光催化
化学
催化作用
色谱法
有机化学
作者
Nan Hao,X. Y. Zhang,Zhou Zhou,Rong Hua,Ying Zhang,Qian Liu,Jing Qian,Henan Li,Kun Wang
标识
DOI:10.1016/j.bios.2017.06.025
摘要
It is necessary to develop rapid, simple and accurate detection method for Escherichia coli (E. coli) due to its widely distributed pathogenic bacteria. Herein, we prepared AgBr nanoparticles (NPs) anchored 3D nitrogen-doped graphene hydrogel (3DNGH) nanocomposites with an exceptionally large accessible surface by a simple hydrothermal approach. The as-prepared 3DNGH porous nanocomposite not only showed better conductivity than that of 3D graphene due to introducing nitrogen element into graphene framework, but also provided a high loading volume for immobilizing luminol. Meanwhile the anchored AgBr NPs served as the catalyst can effectively enhance the ECL behavior of luminol. And the resulting luminol/AgBr/3DNGH exhibited more excellent ECL performances, which was about 2, 3, 8 times enhanced respectively, comparing to luminol/AgBr/3DGH, luminol/3DNGH and luminol/AgBr/2DNG. Further, the multifunctional nanoarchitecture was used as the all-solid-state ECL platform for fabricating Escherichia coli aptasensors via glutaraldehyde as crosslinking agent between amine-functionalized E. coli aptamer and luminol/AgBr/3DNGH. Based on the steric hindrance mechanism that E.coli can significantly decrease the ECL intensity, the proposed aptasensor displayed a linear response for E.coli in the range from 0.5 to 500 cfu/mL with an extremely low detection limit of 0.17 cfu/mL (S/N). In addition, this ECL aptasensor possessed great advantages including the simple operation process, low-cost and sensitivity, which provided a promising approach for the E.coli detection in biomedical, food detection and environmental analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI