亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inside or Outside: Origin of Lithium Dendrite Formation of All Solid‐State Electrolytes

材料科学 枝晶(数学) 锂(药物) 电解质 金属锂 快离子导体 实现(概率) 扩散 晶界 电导率 金属 化学工程 化学物理 热力学 冶金 电极 物理化学 微观结构 几何学 内分泌学 工程类 化学 物理 统计 医学 数学
作者
Fangjie Mo,Jiafeng Ruan,Shuxian Sun,Zixuan Lian,Sangpu Yang,Xinyang Yue,Yun Song,Yong‐Ning Zhou,Fang Fang,Guangai Sun,Shuming Peng,Dalin Sun
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:9 (40) 被引量:121
标识
DOI:10.1002/aenm.201902123
摘要

Abstract All‐solid‐state lithium metal batteries (ASSLMBs) stand out for the next generation of energy storage system. However, the further realization is severely hampered by the lithium dendrite formation in solid state electrolytes (SSEs), by mechanisms that remain controversial. Herein, with the aid of experimental and theoretical approaches, the origin of dendrite formation in representative LiBH 4 SSE, which is thermodynamically stable with the Li metal, suppressing the side reaction between Li and SSE is elucidated. It is demonstrated that upon diffusion, Li + encounters an electron, and is subsequently reduced to Li 0 within the grain boundary/pore of SSE, eventually leading to short circuit. Thus, introducing LiF with the ability of interstitial filling and low electronic conductivity into SSE is the effective countermeasure, and as expected, with the addition of LiF, the critical current density (CCD) increases by 235% compared to the value of pure LiBH 4 . The TiS 2 |LiBH 4 –LiF|Li ASSLMBs manifest a reversible capacity of 137 mAh g −1 at 0.4 C upon 60 cycles. These findings not only unravel critical issues in Li dendrite formation in SSE, but also propose the countermeasure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼厉发布了新的文献求助20
3秒前
VDC发布了新的文献求助50
5秒前
木子水告完成签到,获得积分10
18秒前
安静幻枫应助牛轰轰采纳,获得30
18秒前
姆姆没买完成签到 ,获得积分10
19秒前
黑色兔子完成签到 ,获得积分10
19秒前
yuji完成签到 ,获得积分10
19秒前
阿司匹林完成签到 ,获得积分10
21秒前
26秒前
无花果应助ceeray23采纳,获得111
28秒前
段誉完成签到 ,获得积分10
28秒前
了凡完成签到 ,获得积分10
40秒前
前前前世完成签到,获得积分10
43秒前
fanfan发布了新的文献求助30
51秒前
1分钟前
fanfan完成签到,获得积分20
1分钟前
藤井树发布了新的文献求助10
1分钟前
1分钟前
1分钟前
moonlight完成签到,获得积分10
1分钟前
派大星发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助111
1分钟前
aIARLAE完成签到 ,获得积分10
1分钟前
爱科研的杰杰桀桀完成签到 ,获得积分10
1分钟前
Hello应助飞羽采纳,获得10
1分钟前
PAIDAXXXX完成签到,获得积分10
1分钟前
wanci应助未晚采纳,获得10
1分钟前
快乐小男孩完成签到,获得积分10
1分钟前
夕诙应助藤井树采纳,获得30
1分钟前
猫七发布了新的文献求助10
1分钟前
打打应助qq采纳,获得10
2分钟前
2分钟前
2分钟前
maclogos发布了新的文献求助10
2分钟前
未晚完成签到,获得积分10
2分钟前
橙子发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zzz完成签到 ,获得积分10
2分钟前
小宋应助yueyue采纳,获得20
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041785
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860