Explainable Recommender Systems via Resolving Learning Representations

计算机科学 推荐系统 代表(政治) 透明度(行为) 过程(计算) 图形 协同过滤 特征学习 人工智能 机器学习 匹配(统计) 情报检索 理论计算机科学 数学 政治 政治学 法学 操作系统 统计 计算机安全
作者
Ninghao Liu,Yong Ge,Li Li,Xia Hu,Rui Chen,Soo-Hyun Choi
标识
DOI:10.1145/3340531.3411919
摘要

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HUSHIYI完成签到,获得积分10
1秒前
可爱的函函应助糊涂的剑采纳,获得10
1秒前
xuhang发布了新的文献求助10
1秒前
1秒前
1秒前
西瓜完成签到,获得积分10
1秒前
杨哈哈发布了新的文献求助20
1秒前
Canon大炮关注了科研通微信公众号
2秒前
cstjx发布了新的文献求助10
2秒前
2秒前
大胆的尔岚完成签到,获得积分10
3秒前
土豆··完成签到,获得积分10
3秒前
满意的花生应助甜甜莫言采纳,获得10
3秒前
小白发布了新的文献求助10
3秒前
More发布了新的文献求助10
3秒前
虎峪河畔完成签到,获得积分10
4秒前
Minimum完成签到,获得积分10
4秒前
大圣发布了新的文献求助10
4秒前
zz1234发布了新的文献求助10
4秒前
5秒前
5秒前
jackycas发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
华仔应助ing采纳,获得10
6秒前
善学以致用应助ing采纳,获得10
6秒前
7秒前
7秒前
小蘑菇应助鲤鱼谷冬采纳,获得10
7秒前
不将就1345应助hazhuxixi采纳,获得50
8秒前
香蕉觅云应助殷勤的弼采纳,获得10
8秒前
HBY完成签到,获得积分20
8秒前
8秒前
糊涂的剑完成签到,获得积分10
8秒前
8秒前
9秒前
李帆完成签到,获得积分10
9秒前
JamesPei应助whisper采纳,获得10
9秒前
曾无忧发布了新的文献求助10
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300969
求助须知:如何正确求助?哪些是违规求助? 2935855
关于积分的说明 8474711
捐赠科研通 2609343
什么是DOI,文献DOI怎么找? 1424754
科研通“疑难数据库(出版商)”最低求助积分说明 662088
邀请新用户注册赠送积分活动 646034