The Arabidopsis zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide

拟南芥 新功能化 植物免疫 生物 锌指转录因子 细胞生物学 拟南芥 转录因子 锌指 免疫系统 突变体 心理压抑 抑制因子 免疫 遗传学 基因 基因表达 基因复制
作者
Beimi Cui,Shiwen Xu,Yuan Li,Saima Umbreen,Debra E. Frederickson,Bo Yuan,Jihong Jiang,Fengquan Liu,Qiaona Pan,Gary J. Loake
出处
期刊:New Phytologist [Wiley]
卷期号:230 (1): 259-274 被引量:14
标识
DOI:10.1111/nph.16993
摘要

Nitric oxide (NO) regulates the deployment of a phalanx of immune responses, chief among which is the activation of a constellation of defence-related genes. However, the underlying molecular mechanisms remain largely unknown. The Arabidopsis thaliana zinc finger transcription factor (ZF-TF), S-nitrosothiol (SNO) Regulated 1 (SRG1), is a central target of NO bioactivity during plant immunity. Here we characterize the remaining members of the SRG gene family. Both SRG2 and, especially, SRG3 were positive regulators of salicylic acid-dependent plant immunity. Analysis of SRG single, double and triple mutants implied that SRG family members have additive functions in plant immunity and, surprisingly, are under reciprocal regulation. SRG2 and SRG3 localized to the nucleus and functioned as ethylene-responsive element binding factor-associated amphiphilic repression (EAR) domain-dependent transcriptional repressors: NO abolished this activity for SRG3 but not for SRG2. Consistently, loss of GSNOR function, resulting in increased (S)NO concentrations, fully suppressed the disease resistance phenotype established from SRG3 but not SRG2 overexpression. Remarkably, SRG3 but not SRG2 was S-nitrosylated in vitro and in vivo. Our findings suggest that the SRG family has separable functions in plant immunity, and, surprisingly, these ZF-TFs exhibit reciprocal regulation. It is remarkable that, through neofunctionalization, the SRG family has evolved to become differentially regulated by the key immune-related redox cue, NO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddj发布了新的文献求助10
2秒前
酷酷小鸽子完成签到,获得积分20
2秒前
CipherSage应助DE2022采纳,获得10
2秒前
俏皮丸子发布了新的文献求助10
2秒前
Eve丶Paopaoxuan应助王文茹采纳,获得10
3秒前
pluto应助王文茹采纳,获得10
3秒前
科研通AI5应助王文茹采纳,获得10
3秒前
5秒前
8R60d8应助爱撒娇的书翠采纳,获得10
6秒前
善学以致用应助小李采纳,获得10
6秒前
7秒前
8秒前
chanyi发布了新的文献求助10
9秒前
快乐二方发布了新的文献求助10
12秒前
14秒前
14秒前
可爱的函函应助冷傲易槐采纳,获得10
15秒前
15秒前
17秒前
泡沫发布了新的文献求助10
17秒前
18秒前
zpc发布了新的文献求助10
18秒前
斯文败类应助一夜很静采纳,获得10
18秒前
852应助KUKU采纳,获得10
18秒前
20秒前
21秒前
joey发布了新的文献求助10
21秒前
Tycoon发布了新的文献求助10
22秒前
DE2022发布了新的文献求助10
23秒前
顾矜应助focco采纳,获得10
24秒前
动听的夜发布了新的文献求助10
24秒前
24秒前
25秒前
FashionBoy应助驰驰采纳,获得10
25秒前
26秒前
UncYoung完成签到,获得积分10
27秒前
扶光完成签到 ,获得积分10
28秒前
chanyi发布了新的文献求助10
30秒前
30秒前
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491042
求助须知:如何正确求助?哪些是违规求助? 3077760
关于积分的说明 9150009
捐赠科研通 2770141
什么是DOI,文献DOI怎么找? 1520017
邀请新用户注册赠送积分活动 704488
科研通“疑难数据库(出版商)”最低求助积分说明 702196