Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data

管道(软件) 预处理器 计算机科学 数据预处理 数据挖掘 人工智能 接收机工作特性 特征(语言学) 机器学习 语言学 哲学 程序设计语言
作者
Shengpu Tang,Parmida Davarmanesh,Yanmeng Song,Danai Koutra,Michael W. Sjoding,Jenna Wiens
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (12): 1921-1934 被引量:19
标识
DOI:10.1093/jamia/ocaa139
摘要

Abstract Objective In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR. Materials and Methods Largely data-driven, FIDDLE systematically transforms structured EHR data into feature vectors, limiting the number of decisions a user must make while incorporating good practices from the literature. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collaborative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver operating characteristics curve (AUROC), and compared it to several baselines. Results Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, comparable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Furthermore, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and data sets, while being relatively robust to different settings of user-defined arguments. Conclusions FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building clinically useful ML tools for EHR data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
纱夏完成签到,获得积分10
刚刚
韩韩完成签到,获得积分10
刚刚
刚刚
1秒前
hq发布了新的文献求助10
1秒前
Jasper应助sara采纳,获得10
1秒前
初心发布了新的文献求助10
2秒前
2秒前
福同学完成签到,获得积分10
2秒前
万能图书馆应助YYYY采纳,获得10
3秒前
hhf完成签到,获得积分10
3秒前
淡然尔蝶完成签到,获得积分10
3秒前
4秒前
liuliu发布了新的文献求助10
4秒前
米夏完成签到 ,获得积分10
4秒前
淡然水绿完成签到,获得积分10
4秒前
Sylvia_J完成签到 ,获得积分10
4秒前
sherrycofe应助dororo采纳,获得10
5秒前
5秒前
录录完成签到,获得积分10
6秒前
JJJJJJJJJJJ发布了新的文献求助10
6秒前
Binkolo完成签到,获得积分10
6秒前
科目三应助Lucas采纳,获得10
7秒前
大贝发布了新的文献求助10
7秒前
superhanlei完成签到 ,获得积分10
7秒前
蛋白激酶发布了新的文献求助10
8秒前
尼克11完成签到,获得积分10
8秒前
开心的破茧完成签到,获得积分10
8秒前
chriselva应助易槐采纳,获得20
8秒前
二七完成签到,获得积分10
8秒前
大方笑阳完成签到,获得积分10
9秒前
小杨爱吃羊完成签到 ,获得积分10
9秒前
9秒前
10秒前
序与海完成签到,获得积分10
11秒前
yu发布了新的文献求助20
11秒前
拓跋涵易发布了新的文献求助10
11秒前
小臭屁完成签到,获得积分10
12秒前
小田完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812