Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data

管道(软件) 预处理器 计算机科学 数据预处理 数据挖掘 人工智能 接收机工作特性 特征(语言学) 机器学习 语言学 哲学 程序设计语言
作者
Shengpu Tang,Parmida Davarmanesh,Yanmeng Song,Danai Koutra,Michael W. Sjoding,Jenna Wiens
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (12): 1921-1934 被引量:19
标识
DOI:10.1093/jamia/ocaa139
摘要

Abstract Objective In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR. Materials and Methods Largely data-driven, FIDDLE systematically transforms structured EHR data into feature vectors, limiting the number of decisions a user must make while incorporating good practices from the literature. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collaborative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver operating characteristics curve (AUROC), and compared it to several baselines. Results Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, comparable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Furthermore, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and data sets, while being relatively robust to different settings of user-defined arguments. Conclusions FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building clinically useful ML tools for EHR data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vv完成签到 ,获得积分10
刚刚
马甲发布了新的文献求助10
1秒前
丰富的不惜完成签到,获得积分10
1秒前
一颗煤炭完成签到 ,获得积分10
1秒前
过时的画板完成签到,获得积分10
3秒前
小姚发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
悬停之翼关注了科研通微信公众号
3秒前
烨伟完成签到,获得积分10
6秒前
七七七发布了新的文献求助10
7秒前
激情的士萧完成签到,获得积分20
8秒前
Sober完成签到,获得积分10
8秒前
10秒前
10秒前
善学以致用应助朴实乐菱采纳,获得10
10秒前
英俊的铭应助马甲采纳,获得10
10秒前
北洛完成签到 ,获得积分10
12秒前
wzy完成签到,获得积分10
14秒前
14秒前
喜洋洋发布了新的文献求助10
15秒前
自觉水绿完成签到,获得积分20
15秒前
li发布了新的文献求助10
18秒前
wzy发布了新的文献求助10
18秒前
LLN完成签到,获得积分10
18秒前
整点儿薯条完成签到,获得积分10
19秒前
SHAO完成签到,获得积分0
19秒前
20秒前
敬老院N号举报傅宛白求助涉嫌违规
21秒前
21秒前
冰怡霖完成签到,获得积分10
21秒前
sandse7en完成签到 ,获得积分10
22秒前
22秒前
Imp完成签到,获得积分10
23秒前
Orange应助阿凉采纳,获得10
23秒前
lufang完成签到,获得积分10
23秒前
123完成签到,获得积分10
23秒前
25秒前
123发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616765
求助须知:如何正确求助?哪些是违规求助? 4019906
关于积分的说明 12443708
捐赠科研通 3703166
什么是DOI,文献DOI怎么找? 2041969
邀请新用户注册赠送积分活动 1074619
科研通“疑难数据库(出版商)”最低求助积分说明 958100