Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data

管道(软件) 预处理器 计算机科学 数据预处理 数据挖掘 人工智能 接收机工作特性 特征(语言学) 机器学习 语言学 哲学 程序设计语言
作者
Shengpu Tang,Parmida Davarmanesh,Yanmeng Song,Danai Koutra,Michael W. Sjoding,Jenna Wiens
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (12): 1921-1934 被引量:19
标识
DOI:10.1093/jamia/ocaa139
摘要

Abstract Objective In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR. Materials and Methods Largely data-driven, FIDDLE systematically transforms structured EHR data into feature vectors, limiting the number of decisions a user must make while incorporating good practices from the literature. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collaborative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver operating characteristics curve (AUROC), and compared it to several baselines. Results Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, comparable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Furthermore, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and data sets, while being relatively robust to different settings of user-defined arguments. Conclusions FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building clinically useful ML tools for EHR data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vanity完成签到 ,获得积分10
刚刚
执着的以筠完成签到 ,获得积分10
1秒前
1515完成签到 ,获得积分10
1秒前
meizi0109完成签到 ,获得积分10
1秒前
2秒前
威武鸽子发布了新的文献求助10
2秒前
xiahou完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
简奥斯汀完成签到 ,获得积分10
8秒前
8秒前
ESC惠子子子子子完成签到 ,获得积分10
9秒前
六元一斤虾完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
roundtree完成签到 ,获得积分0
13秒前
13秒前
zhaolee完成签到 ,获得积分10
15秒前
一颗糖炒栗子完成签到,获得积分10
15秒前
358489228完成签到,获得积分10
16秒前
361发布了新的文献求助10
18秒前
研友_yLpYkn完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
全语蝶发布了新的文献求助10
20秒前
ninomae完成签到 ,获得积分10
20秒前
yinyin完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
乐乐应助sophia021012采纳,获得10
26秒前
29秒前
溯溯完成签到 ,获得积分10
31秒前
32秒前
偷得浮生半日闲完成签到,获得积分10
34秒前
35秒前
汪蔓蔓完成签到 ,获得积分10
36秒前
361发布了新的文献求助10
38秒前
坚强枫完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
41秒前
曾经小伙完成签到 ,获得积分10
44秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773368
求助须知:如何正确求助?哪些是违规求助? 5610371
关于积分的说明 15430973
捐赠科研通 4905878
什么是DOI,文献DOI怎么找? 2639904
邀请新用户注册赠送积分活动 1587778
关于科研通互助平台的介绍 1542792