Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data

管道(软件) 预处理器 计算机科学 数据预处理 数据挖掘 人工智能 接收机工作特性 特征(语言学) 机器学习 语言学 哲学 程序设计语言
作者
Shengpu Tang,Parmida Davarmanesh,Yanmeng Song,Danai Koutra,Michael W. Sjoding,Jenna Wiens
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (12): 1921-1934 被引量:19
标识
DOI:10.1093/jamia/ocaa139
摘要

Abstract Objective In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR. Materials and Methods Largely data-driven, FIDDLE systematically transforms structured EHR data into feature vectors, limiting the number of decisions a user must make while incorporating good practices from the literature. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collaborative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver operating characteristics curve (AUROC), and compared it to several baselines. Results Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, comparable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Furthermore, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and data sets, while being relatively robust to different settings of user-defined arguments. Conclusions FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building clinically useful ML tools for EHR data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LY123发布了新的文献求助10
刚刚
传奇3应助健壮仙人掌采纳,获得10
1秒前
1秒前
大模型应助Cloud采纳,获得10
1秒前
zoey发布了新的文献求助30
1秒前
SciGPT应助名不虚传采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
serendipity完成签到,获得积分10
2秒前
Hello应助小刘在学习采纳,获得10
2秒前
哈士奇野猪完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
ouLniM完成签到 ,获得积分10
3秒前
3秒前
魏一一发布了新的文献求助10
4秒前
4秒前
4秒前
Ox1dant发布了新的文献求助10
5秒前
5秒前
lina完成签到,获得积分10
5秒前
大个应助Maggie采纳,获得10
5秒前
5秒前
友好的天曼完成签到 ,获得积分10
6秒前
6秒前
6秒前
zxy发布了新的文献求助10
6秒前
大模型应助HLS采纳,获得10
6秒前
bkagyin应助Kkkkk采纳,获得10
8秒前
aa完成签到,获得积分10
8秒前
Ox1dant完成签到,获得积分10
8秒前
大模型应助LY123采纳,获得10
9秒前
zmq完成签到,获得积分10
9秒前
she发布了新的文献求助10
9秒前
水月发布了新的文献求助10
9秒前
Gjjjjjjj发布了新的文献求助10
9秒前
10秒前
于林渤发布了新的文献求助10
10秒前
今后应助蓝柚采纳,获得10
11秒前
11秒前
xii发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419