亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Democratizing EHR analyses with FIDDLE: a flexible data-driven preprocessing pipeline for structured clinical data

管道(软件) 预处理器 计算机科学 数据预处理 数据挖掘 人工智能 接收机工作特性 特征(语言学) 机器学习 语言学 哲学 程序设计语言
作者
Shengpu Tang,Parmida Davarmanesh,Yanmeng Song,Danai Koutra,Michael W. Sjoding,Jenna Wiens
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:27 (12): 1921-1934 被引量:19
标识
DOI:10.1093/jamia/ocaa139
摘要

Abstract Objective In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR. Materials and Methods Largely data-driven, FIDDLE systematically transforms structured EHR data into feature vectors, limiting the number of decisions a user must make while incorporating good practices from the literature. To demonstrate its utility and flexibility, we conducted a proof-of-concept experiment in which we applied FIDDLE to 2 publicly available EHR data sets collected from intensive care units: MIMIC-III and the eICU Collaborative Research Database. We trained different ML models to predict 3 clinically important outcomes: in-hospital mortality, acute respiratory failure, and shock. We evaluated models using the area under the receiver operating characteristics curve (AUROC), and compared it to several baselines. Results Across tasks, FIDDLE extracted 2,528 to 7,403 features from MIMIC-III and eICU, respectively. On all tasks, FIDDLE-based models achieved good discriminative performance, with AUROCs of 0.757–0.886, comparable to the performance of MIMIC-Extract, a preprocessing pipeline designed specifically for MIMIC-III. Furthermore, our results showed that FIDDLE is generalizable across different prediction times, ML algorithms, and data sets, while being relatively robust to different settings of user-defined arguments. Conclusions FIDDLE, an open-source preprocessing pipeline, facilitates applying ML to structured EHR data. By accelerating and standardizing labor-intensive preprocessing, FIDDLE can help stimulate progress in building clinically useful ML tools for EHR data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冒险寻羊完成签到,获得积分10
14秒前
40秒前
lixiaorui发布了新的文献求助10
45秒前
1分钟前
1分钟前
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
天天完成签到 ,获得积分10
1分钟前
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yqt完成签到,获得积分10
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
2分钟前
orixero应助油柑美式采纳,获得10
2分钟前
2分钟前
2分钟前
油柑美式发布了新的文献求助10
2分钟前
2分钟前
哈哈完成签到,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助123456采纳,获得10
2分钟前
RONG完成签到 ,获得积分10
2分钟前
2分钟前
www完成签到,获得积分10
2分钟前
123456发布了新的文献求助10
2分钟前
李健的小迷弟应助jarrettee采纳,获得10
3分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
山猪吃细糠完成签到 ,获得积分10
4分钟前
4分钟前
杨怀托发布了新的文献求助30
4分钟前
4分钟前
狂野吐司完成签到 ,获得积分10
4分钟前
hh发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254139
求助须知:如何正确求助?哪些是违规求助? 4417202
关于积分的说明 13751065
捐赠科研通 4289797
什么是DOI,文献DOI怎么找? 2353745
邀请新用户注册赠送积分活动 1350442
关于科研通互助平台的介绍 1310479