Meta-RCNN: Meta Learning for Few-Shot Object Detection

目标检测 帕斯卡(单位) 计算机科学 人工智能 元学习(计算机科学) 机器学习 分类器(UML) 深度学习 探测器 训练集 模式识别(心理学) 任务(项目管理) 工程类 电信 程序设计语言 系统工程
作者
Xiongwei Wu,Doyen Sahoo,Steven C. H. Hoi
标识
DOI:10.1145/3394171.3413832
摘要

Despite significant advances in deep learning based object detection in recent years, training effective detectors in a small data regime remains an open challenge. This is very important since labelling training data for object detection is often very expensive and time-consuming. In this paper, we investigate the problem of few-shot object detection, where a detector has access to only limited amounts of annotated data. Based on the meta-learning principle, we propose a new meta-learning framework for object detection named "Meta-RCNN", which learns the ability to perform few-shot detection via meta-learning. Specifically, Meta-RCNN learns an object detector in an episodic learning paradigm on the (meta) training data. This learning scheme helps acquire a prior which enables Meta-RCNN to do few-shot detection on novel tasks. Built on top of the popular Faster RCNN detector, in Meta-RCNN, both the Region Proposal Network (RPN) and the object classification branch are meta-learned. The meta-trained RPN learns to provide class-specific proposals, while the object classifier learns to do few-shot classification. The novel loss objectives and learning strategy of Meta-RCNN can be trained in an end-to-end manner. We demonstrate the effectiveness of Meta-RCNN in few-shot detection on three datasets (Pascal-VOC, ImageNet-LOC and MSCOCO) with promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
windypk完成签到,获得积分10
1秒前
1秒前
1秒前
打打应助tfq200采纳,获得50
1秒前
1秒前
希望天下0贩的0应助Simmy采纳,获得10
1秒前
高高的坤发布了新的文献求助10
2秒前
2秒前
科研通AI5应助2016采纳,获得30
2秒前
奋斗的冬云完成签到,获得积分10
3秒前
3秒前
从容谷菱发布了新的文献求助10
3秒前
Hello应助zyy采纳,获得10
3秒前
科研通AI5应助小许采纳,获得10
3秒前
4秒前
学习发布了新的文献求助10
4秒前
zhengyuetong发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
em0应助小飞侠来咯采纳,获得10
6秒前
金熙美发布了新的文献求助30
6秒前
22222222发布了新的文献求助10
6秒前
7秒前
chenhuiwan应助学术垃圾采纳,获得10
7秒前
晨曦暮雪完成签到,获得积分10
7秒前
王焕然完成签到 ,获得积分20
7秒前
7秒前
ss发布了新的文献求助10
7秒前
8秒前
绯月完成签到,获得积分20
8秒前
和谐念寒发布了新的文献求助10
8秒前
8秒前
打工人完成签到,获得积分10
9秒前
LTY完成签到,获得积分10
9秒前
希望天下0贩的0应助xry采纳,获得10
9秒前
明理楷瑞发布了新的文献求助10
10秒前
Orange应助sara采纳,获得10
10秒前
10秒前
cys发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424