亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-RCNN: Meta Learning for Few-Shot Object Detection

目标检测 帕斯卡(单位) 计算机科学 人工智能 元学习(计算机科学) 机器学习 分类器(UML) 深度学习 探测器 训练集 模式识别(心理学) 任务(项目管理) 工程类 电信 系统工程 程序设计语言
作者
Xiongwei Wu,Doyen Sahoo,Steven C. H. Hoi
标识
DOI:10.1145/3394171.3413832
摘要

Despite significant advances in deep learning based object detection in recent years, training effective detectors in a small data regime remains an open challenge. This is very important since labelling training data for object detection is often very expensive and time-consuming. In this paper, we investigate the problem of few-shot object detection, where a detector has access to only limited amounts of annotated data. Based on the meta-learning principle, we propose a new meta-learning framework for object detection named "Meta-RCNN", which learns the ability to perform few-shot detection via meta-learning. Specifically, Meta-RCNN learns an object detector in an episodic learning paradigm on the (meta) training data. This learning scheme helps acquire a prior which enables Meta-RCNN to do few-shot detection on novel tasks. Built on top of the popular Faster RCNN detector, in Meta-RCNN, both the Region Proposal Network (RPN) and the object classification branch are meta-learned. The meta-trained RPN learns to provide class-specific proposals, while the object classifier learns to do few-shot classification. The novel loss objectives and learning strategy of Meta-RCNN can be trained in an end-to-end manner. We demonstrate the effectiveness of Meta-RCNN in few-shot detection on three datasets (Pascal-VOC, ImageNet-LOC and MSCOCO) with promising results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superlkz发布了新的文献求助20
3秒前
丰富的谷菱完成签到,获得积分10
12秒前
uo完成签到 ,获得积分10
18秒前
Wecple完成签到 ,获得积分10
19秒前
30秒前
37秒前
彬彬完成签到 ,获得积分10
41秒前
喻贡金发布了新的文献求助10
42秒前
49秒前
情怀应助喻贡金采纳,获得10
50秒前
研友_VZG7GZ应助tuyfytjt采纳,获得10
1分钟前
1分钟前
1分钟前
zh发布了新的文献求助10
1分钟前
Lacrimae完成签到,获得积分10
1分钟前
1分钟前
党弛发布了新的文献求助10
1分钟前
酷炫翠柏发布了新的文献求助10
1分钟前
顺利的边牧完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zh完成签到,获得积分10
1分钟前
高山流水完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
哈哈完成签到,获得积分10
1分钟前
昵称完成签到,获得积分0
1分钟前
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
gcr完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
弋鱼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
是个哑巴发布了新的文献求助10
1分钟前
Cherish完成签到,获得积分10
1分钟前
高大的清涟完成签到 ,获得积分10
1分钟前
1分钟前
ding应助党弛采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657856
求助须知:如何正确求助?哪些是违规求助? 4813208
关于积分的说明 15080485
捐赠科研通 4816077
什么是DOI,文献DOI怎么找? 2577093
邀请新用户注册赠送积分活动 1532087
关于科研通互助平台的介绍 1490658