亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Meta-RCNN: Meta Learning for Few-Shot Object Detection

目标检测 帕斯卡(单位) 计算机科学 人工智能 元学习(计算机科学) 机器学习 分类器(UML) 深度学习 探测器 训练集 模式识别(心理学) 任务(项目管理) 工程类 电信 系统工程 程序设计语言
作者
Xiongwei Wu,Doyen Sahoo,Steven C. H. Hoi
标识
DOI:10.1145/3394171.3413832
摘要

Despite significant advances in deep learning based object detection in recent years, training effective detectors in a small data regime remains an open challenge. This is very important since labelling training data for object detection is often very expensive and time-consuming. In this paper, we investigate the problem of few-shot object detection, where a detector has access to only limited amounts of annotated data. Based on the meta-learning principle, we propose a new meta-learning framework for object detection named "Meta-RCNN", which learns the ability to perform few-shot detection via meta-learning. Specifically, Meta-RCNN learns an object detector in an episodic learning paradigm on the (meta) training data. This learning scheme helps acquire a prior which enables Meta-RCNN to do few-shot detection on novel tasks. Built on top of the popular Faster RCNN detector, in Meta-RCNN, both the Region Proposal Network (RPN) and the object classification branch are meta-learned. The meta-trained RPN learns to provide class-specific proposals, while the object classifier learns to do few-shot classification. The novel loss objectives and learning strategy of Meta-RCNN can be trained in an end-to-end manner. We demonstrate the effectiveness of Meta-RCNN in few-shot detection on three datasets (Pascal-VOC, ImageNet-LOC and MSCOCO) with promising results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
wesley完成签到 ,获得积分10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
jeff完成签到,获得积分10
10秒前
18秒前
19秒前
Nature应助qingcahng采纳,获得30
19秒前
无辜士萧发布了新的文献求助10
25秒前
33秒前
寻道图强应助ceeray23采纳,获得200
36秒前
38秒前
刘哈哈完成签到 ,获得积分10
38秒前
WU完成签到 ,获得积分10
43秒前
刻苦的小土豆完成签到 ,获得积分10
49秒前
49秒前
50秒前
52秒前
wq完成签到,获得积分10
53秒前
wq发布了新的文献求助10
56秒前
59秒前
1分钟前
丘比特应助勤奋灵凡采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
勤奋灵凡发布了新的文献求助10
1分钟前
xiezizai完成签到,获得积分10
1分钟前
YuxinChen完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
瘦瘦以亦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Qinghen发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017