临近预报
多普勒雷达
对流风暴探测
气象雷达
风暴
卷积神经网络
气象学
遥感
天气预报
雷达
恶劣天气
多普勒效应
计算机科学
地质学
人工智能
电信
地理
物理
天文
作者
Lei Han,Juanzhen Sun,Wei Zhang
标识
DOI:10.1109/tgrs.2019.2948070
摘要
Convective storms are one of the severe weather hazards found during the warm season. Doppler weather radar is the only operational instrument that can frequently sample the detailed structure of convective storm which has a small spatial scale and short lifetime. For the challenging task of short-term convective storm forecasting, 3-D radar images contain information about the processes in convective storm. However, effectively extracting such information from multisource raw data has been problematic due to a lack of methodology and computation limitations. Recent advancements in deep learning techniques and graphics processing units now make it possible. This article investigates the feasibility and performance of an end-to-end deep learning nowcasting method. The nowcasting problem was transformed into a classification problem first, and then, a deep learning method that uses a convolutional neural network was presented to make predictions. On the first layer of CNN, a cross-channel 3D convolution was proposed to fuse 3D raw data. The CNN method eliminates the handcrafted feature engineering, i.e., the process of using domain knowledge of the data to manually design features. Operationally produced historical data of the Beijing-Tianjin-Hebei region in China was used to train the nowcasting system and evaluate its performance; 3737332 samples were collected in the training data set. The experimental results show that the deep learning method improves nowcasting skills compared with traditional machine learning methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI