Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar Data

临近预报 多普勒雷达 对流风暴探测 气象雷达 风暴 卷积神经网络 气象学 遥感 天气预报 雷达 恶劣天气 多普勒效应 计算机科学 地质学 人工智能 电信 地理 物理 天文
作者
Lei Han,Juanzhen Sun,Wei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (2): 1487-1495 被引量:22
标识
DOI:10.1109/tgrs.2019.2948070
摘要

Convective storms are one of the severe weather hazards found during the warm season. Doppler weather radar is the only operational instrument that can frequently sample the detailed structure of convective storm which has a small spatial scale and short lifetime. For the challenging task of short-term convective storm forecasting, 3-D radar images contain information about the processes in convective storm. However, effectively extracting such information from multisource raw data has been problematic due to a lack of methodology and computation limitations. Recent advancements in deep learning techniques and graphics processing units now make it possible. This article investigates the feasibility and performance of an end-to-end deep learning nowcasting method. The nowcasting problem was transformed into a classification problem first, and then, a deep learning method that uses a convolutional neural network was presented to make predictions. On the first layer of CNN, a cross-channel 3D convolution was proposed to fuse 3D raw data. The CNN method eliminates the handcrafted feature engineering, i.e., the process of using domain knowledge of the data to manually design features. Operationally produced historical data of the Beijing-Tianjin-Hebei region in China was used to train the nowcasting system and evaluate its performance; 3737332 samples were collected in the training data set. The experimental results show that the deep learning method improves nowcasting skills compared with traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123456完成签到,获得积分20
1秒前
852应助欣喜的沛容采纳,获得10
1秒前
2秒前
3秒前
T_MC郭完成签到,获得积分10
3秒前
玩命的友安完成签到,获得积分10
3秒前
4秒前
欣慰寄风完成签到,获得积分10
4秒前
与yu发布了新的文献求助10
4秒前
nini完成签到 ,获得积分10
5秒前
超级砖家发布了新的文献求助10
5秒前
5秒前
刻苦的秋玲完成签到,获得积分10
5秒前
fcyyc完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
莫愁完成签到,获得积分10
7秒前
8秒前
顺心梦山完成签到,获得积分10
8秒前
六六完成签到,获得积分10
8秒前
练习者发布了新的文献求助10
8秒前
8秒前
666发布了新的文献求助10
9秒前
xiaoxue完成签到 ,获得积分10
9秒前
科研饼发布了新的文献求助10
9秒前
英俊的铭应助好运常在采纳,获得10
9秒前
隐形曼青应助泥沼采纳,获得10
10秒前
10秒前
大俊俊完成签到 ,获得积分10
11秒前
Doolin完成签到,获得积分20
12秒前
junjieLIU完成签到,获得积分10
13秒前
13秒前
你好完成签到,获得积分10
13秒前
lizhiqian2024发布了新的文献求助10
14秒前
14秒前
123456关注了科研通微信公众号
14秒前
15秒前
研究僧发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627