已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on the quantitative inversion model of heavy metals in soda saline land based on visible-near-infrared spectroscopy

相关系数 分析化学(期刊) 碱金属 材料科学 光谱学 反演(地质) 矿物学 化学 地质学 物理 统计 数学 环境化学 冶金 构造盆地 古生物学 有机化学 量子力学
作者
Yachun Mao,Jing Liu,Wang Cao,Ruibo Ding,Yanhua Fu,Zhanguo Zhao
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:112: 103602-103602 被引量:21
标识
DOI:10.1016/j.infrared.2020.103602
摘要

With saline-alkali land in Zhenlai County, Baicheng city, Jilin Province, China as the research object, a quantitative inversion model for the heavy metal content of manganese (Mn), cobalt (Co) and iron (Fe) in saline-alkali soil and the visible-near-infrared spectroscopy data were established. First, Savitzky-Golay (SG) smoothing, multivariate scattering correction (MSC), continuum removal (CR), and combined transformation methods were performed on the original spectral data. By analysing the correlation between processed data and heavy metal content, the characteristic bands corresponding to different spectral transformations were extracted. Next, the ratio index (RI), difference index (DI) and normalized difference index (NDI) were constructed, and the spectral index was determined to have the most significant correlation with the combination of Mn-, Co- and Fe-content-sensitive bands and its corresponding Spearman rank correlation coefficient. Finally, a quantitative inversion model for the heavy metal content (Mn, Co and Fe) in soda saline-alkali land was established, and its accuracy was verified. The research results show that the optimal band selection principle for the quantitative inversion model of heavy metals in soda saline-alkali land is as follows: Mn selected 219 groups of sensitive bands with correlation coefficient r > 0.70, Co selected 1377 groups of sensitive bands with correlation coefficient r > 0.80, and Fe selected 104 groups of sensitive bands with correlation coefficient r > 0.80. Based on these selection principles, the random forest algorithm was used to perform an inversion for the Mn, Co and Fe contents with the best results, the goodness of fit (R2) values between predicted and measured values were 0.76, 0.92 and 0.91, and the mean relative accuracy was 91.75%, 92.45% and 93.90%, respectively. This method has improved prediction accuracy of the Mn, Co and Fe contents in saline-alkali land.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮卡丘完成签到,获得积分10
刚刚
蔡翌文发布了新的文献求助10
1秒前
NOTHING完成签到 ,获得积分10
1秒前
恬恬完成签到 ,获得积分10
4秒前
科研通AI5应助boytoa采纳,获得10
7秒前
Aliya完成签到 ,获得积分10
12秒前
zs完成签到 ,获得积分10
15秒前
tmw2024完成签到,获得积分10
16秒前
星辰大海应助MalowZhang采纳,获得10
25秒前
顾矜应助tmw2024采纳,获得10
27秒前
35秒前
36秒前
37秒前
斯文败类应助空空采纳,获得10
38秒前
MalowZhang完成签到,获得积分20
38秒前
王木木完成签到 ,获得积分10
41秒前
MalowZhang发布了新的文献求助10
41秒前
41秒前
JamesPei应助董世英采纳,获得10
43秒前
44秒前
45秒前
B哥完成签到,获得积分10
46秒前
MLi完成签到,获得积分10
46秒前
46秒前
49秒前
王大川发布了新的文献求助10
50秒前
51秒前
54秒前
Lucas应助五花肉采纳,获得10
56秒前
董世英发布了新的文献求助10
1分钟前
ppppppp_76完成签到 ,获得积分10
1分钟前
1分钟前
五花肉发布了新的文献求助10
1分钟前
共享精神应助塞巴斯蒂安采纳,获得10
1分钟前
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
tmw2024发布了新的文献求助10
1分钟前
蘇q完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助gwp1223采纳,获得10
1分钟前
常涑完成签到,获得积分10
1分钟前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681545
求助须知:如何正确求助?哪些是违规求助? 3233417
关于积分的说明 9808789
捐赠科研通 2944880
什么是DOI,文献DOI怎么找? 1614990
邀请新用户注册赠送积分活动 762484
科研通“疑难数据库(出版商)”最低求助积分说明 737393