亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM

计算机科学 卷积神经网络 脑电图 深度学习 人工智能 模式识别(心理学) 情绪分类 特征学习 机器学习 图形 心理学 理论计算机科学 精神科
作者
Yongqiang Yin,Xiangwei Zheng,Bin Hu,Yuang Zhang,Xinchun Cui
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:100: 106954-106954 被引量:248
标识
DOI:10.1016/j.asoc.2020.106954
摘要

In recent years, graph convolutional neural networks have become research focus and inspired new ideas for emotion recognition based on EEG. Deep learning has been widely used in emotion recognition, but it is still challenging to construct models and algorithms in practical applications. In this paper, we propose a novel emotion recognition method based on a novel deep learning model (ERDL). Firstly, EEG data is calibrated by 3s baseline data and divided into segments with 6s time window, and then differential entropy is extracted from each segment to construct feature cube. Secondly, the feature cube of each segment serves as input of the novel deep learning model which fuses graph convolutional neural network (GCNN) and long-short term memories neural networks (LSTM). In the fusion model, multiple GCNNs are applied to extract graph domain features while LSTM cells are used to memorize the change of the relationship between two channels within a specific time and extract temporal features, and Dense layer is used to attain the emotion classification results. At last, we conducted extensive experiments on DEAP dataset and experimental results demonstrate that the proposed method has better classification results than the state-of-the-art methods. We attained the average classification accuracy of 90.45% and 90.60% for valence and arousal in subject-dependent experiments while 84.81% and 85.27% in subject-independent experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
铁臂阿童木完成签到,获得积分10
刚刚
iorpi完成签到,获得积分10
19秒前
23秒前
23秒前
24秒前
Phoneix发布了新的文献求助20
28秒前
K寓应助Nan采纳,获得10
28秒前
LaVineYoung完成签到,获得积分10
29秒前
31秒前
CSun完成签到,获得积分10
32秒前
molo完成签到,获得积分10
37秒前
38秒前
CSun发布了新的文献求助10
38秒前
42秒前
叽里呱啦完成签到 ,获得积分10
43秒前
47秒前
47秒前
刘可歆发布了新的文献求助10
53秒前
嗨翻的冰激凌完成签到 ,获得积分10
1分钟前
1分钟前
刘可歆完成签到,获得积分10
1分钟前
wtsow完成签到,获得积分0
1分钟前
Lucas应助zzz采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得30
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
pjmwj发布了新的文献求助10
1分钟前
天天完成签到 ,获得积分10
1分钟前
哆啦A梦完成签到 ,获得积分10
1分钟前
1分钟前
JamesPei应助羊毛采纳,获得10
1分钟前
1分钟前
无情的麦片完成签到 ,获得积分10
1分钟前
2分钟前
嗯哼应助pwy采纳,获得20
2分钟前
Orange应助努力毕业的胖秋采纳,获得10
2分钟前
asdfqaz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207690
求助须知:如何正确求助?哪些是违规求助? 2856996
关于积分的说明 8108120
捐赠科研通 2522576
什么是DOI,文献DOI怎么找? 1355808
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613670