Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks

计算机科学 神经形态工程学 记忆电阻器 可扩展性 巨量平行 模拟退火 人工神经网络 解算器 高效能源利用 Hopfield网络 最优化问题 计算机工程 算法 电子工程 并行计算 人工智能 电气工程 工程类 数据库 程序设计语言
作者
Fuxi Cai,Suhas Kumar,Thomas Van Vaerenbergh,Xia Sheng,Rui Liu,Can Li,Zhan Liu,Martin Foltín,Shimeng Yu,Qiangfei Xia,J. Joshua Yang,Raymond G. Beausoleil,Wei Lü,John Paul Strachan
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:3 (7): 409-418 被引量:286
标识
DOI:10.1038/s41928-020-0436-6
摘要

To tackle important combinatorial optimization problems, a variety of annealing-inspired computing accelerators, based on several different technology platforms, have been proposed, including quantum-, optical- and electronics-based approaches. However, to be of use in industrial applications, further improvements in speed and energy efficiency are necessary. Here, we report a memristor-based annealing system that uses an energy-efficient neuromorphic architecture based on a Hopfield neural network. Our analogue–digital computing approach creates an optimization solver in which massively parallel operations are performed in a dense crossbar array that can inject the needed computational noise through the analogue array and device errors, amplified or dampened by using a novel feedback algorithm. We experimentally show that the approach can solve non-deterministic polynomial-time (NP)-hard max-cut problems by harnessing the intrinsic hardware noise. We also use experimentally grounded simulations to explore scalability with problem size, which suggest that our memristor-based approach can offer a solution throughput over four orders of magnitude higher per power consumption relative to current quantum, optical and fully digital approaches. A memristor-based annealing system that uses an analogue neuromorphic architecture based on a Hopfield neural network can solve non-deterministic polynomial (NP)-hard max-cut problems in an approach that is potentially more efficient than current quantum, optical and digital approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
坚定萤完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wuyuzegang应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
lemonli完成签到,获得积分20
3秒前
3秒前
20231125完成签到,获得积分10
3秒前
3秒前
CipherSage应助DDKK采纳,获得10
3秒前
AronHUANG发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助拼搏迎梦采纳,获得20
4秒前
爆米花应助缥缈的闭月采纳,获得30
4秒前
南极野人完成签到,获得积分10
5秒前
活泼一凤发布了新的文献求助10
5秒前
苹果沛柔完成签到,获得积分10
5秒前
6秒前
所所应助鱼2333采纳,获得10
6秒前
小鱼发布了新的文献求助10
7秒前
山大王yoyo完成签到,获得积分10
7秒前
Ava应助wucl1990采纳,获得10
7秒前
7秒前
Sunrise完成签到,获得积分10
8秒前
苹果沛柔发布了新的文献求助10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620