Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks

计算机科学 神经形态工程学 记忆电阻器 可扩展性 巨量平行 模拟退火 人工神经网络 解算器 高效能源利用 Hopfield网络 最优化问题 计算机工程 算法 电子工程 并行计算 人工智能 电气工程 工程类 数据库 程序设计语言
作者
Fuxi Cai,Suhas Kumar,Thomas Van Vaerenbergh,Xia Sheng,Rui Liu,Can Li,Zhan Liu,Martin Foltín,Shimeng Yu,Qiangfei Xia,J. Joshua Yang,Raymond G. Beausoleil,Wei Lü,John Paul Strachan
出处
期刊:Nature electronics [Springer Nature]
卷期号:3 (7): 409-418 被引量:238
标识
DOI:10.1038/s41928-020-0436-6
摘要

To tackle important combinatorial optimization problems, a variety of annealing-inspired computing accelerators, based on several different technology platforms, have been proposed, including quantum-, optical- and electronics-based approaches. However, to be of use in industrial applications, further improvements in speed and energy efficiency are necessary. Here, we report a memristor-based annealing system that uses an energy-efficient neuromorphic architecture based on a Hopfield neural network. Our analogue–digital computing approach creates an optimization solver in which massively parallel operations are performed in a dense crossbar array that can inject the needed computational noise through the analogue array and device errors, amplified or dampened by using a novel feedback algorithm. We experimentally show that the approach can solve non-deterministic polynomial-time (NP)-hard max-cut problems by harnessing the intrinsic hardware noise. We also use experimentally grounded simulations to explore scalability with problem size, which suggest that our memristor-based approach can offer a solution throughput over four orders of magnitude higher per power consumption relative to current quantum, optical and fully digital approaches. A memristor-based annealing system that uses an analogue neuromorphic architecture based on a Hopfield neural network can solve non-deterministic polynomial (NP)-hard max-cut problems in an approach that is potentially more efficient than current quantum, optical and digital approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00爱学习完成签到 ,获得积分10
1秒前
听风完成签到 ,获得积分10
1秒前
赫如冰发布了新的文献求助10
1秒前
小小富发布了新的文献求助10
2秒前
Akim应助无辜的皮皮虾采纳,获得10
3秒前
Hello应助24采纳,获得10
3秒前
whx完成签到 ,获得积分10
4秒前
不配.应助wyl采纳,获得20
5秒前
小二郎应助赫如冰采纳,获得10
5秒前
6秒前
6秒前
7秒前
一一完成签到,获得积分10
7秒前
太阳完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
11秒前
Singularity应助阿阿采纳,获得10
11秒前
11秒前
13秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
木象爱火锅完成签到,获得积分10
15秒前
能干的邹发布了新的文献求助10
15秒前
15秒前
悦耳曼凝发布了新的文献求助10
15秒前
Easyyy发布了新的文献求助10
16秒前
一只菜谱发布了新的文献求助10
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046