计算机科学
离群值
人工智能
词(群论)
估计员
语义学(计算机科学)
自然语言处理
代表(政治)
模式识别(心理学)
数学
统计
几何学
政治学
政治
程序设计语言
法学
作者
Eirini Papagiannopoulou,Grigorios Tsoumakas
标识
DOI:10.1007/978-3-031-24337-0_16
摘要
AbstractWe propose a novel unsupervised keyphrase extraction approach that filters candidate keywords using outlier detection. It starts by training word embeddings on the target document to capture semantic regularities among the words. It then uses the minimum covariance determinant estimator to model the distribution of non-keyphrase word vectors, under the assumption that these vectors come from the same distribution, indicative of their irrelevance to the semantics expressed by the dimensions of the learned vector representation. Candidate keyphrases only consist of words that are detected as outliers of this dominant distribution. Empirical results show that our approach outperforms state-of-the-art and recent unsupervised keyphrase extraction methods.KeywordsUnsupervised keyphrase extractionOutlier detectionMCD estimator
科研通智能强力驱动
Strongly Powered by AbleSci AI