计量学
自动化
吞吐量
探测器
停留时间
计算机科学
能量(信号处理)
噪音(视频)
体积热力学
信噪比(成像)
电子工程
可靠性工程
光学
工程类
物理
机械工程
人工智能
电信
数学
统计
图像(数学)
医学
临床心理学
量子力学
无线
作者
Justin Roller,Ziyang Zhong,P. Stríženec,Oleksii Bidiuk,Jeff Blackwood,Martin J. Verheijen,Ozan Ugurlu,Jason Donald
出处
期刊:Proceedings
日期:2017-11-01
被引量:2
标识
DOI:10.31399/asm.cp.istfa2017p0386
摘要
Abstract Automated S/TEM (auto-S/TEM) and by extension automated energy dispersive x-ray spectroscopy (auto-EDS) enable the collection of large volumes of data that historically was not feasible on a sustained basis using manual S/TEM operation. Automation removes variabilities attributed to operator training and bias while enabling repeatable, precise, and consistent data. This paper examines general considerations for high volume and auto-EDS metrology. Maps are evaluated relative to analysis time and the requisite signal-to-noise (SNR) necessary for adequate measurement precision. Auto-EDS parameters (dwell time and mapping time) were investigated to maximize EDS net counts and SNR for throughput. A methodology was presented to monitor the SNR ratio of critical dimensions which can be extended to further understand the minimum value needed to maintain an acceptable measurement precision. It is important to further study other means of increasing the SNR, such as beam current, accelerating voltage, and larger solid-angle detectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI