氧化应激
促炎细胞因子
细胞凋亡
丙二醛
活性氧
超氧化物歧化酶
下调和上调
活力测定
生物
线粒体ROS
化学
炎症
分子生物学
内分泌学
免疫学
细胞生物学
生物化学
基因
作者
Hua Li,Lingxiao Xu,Hui Song
标识
DOI:10.1080/02713683.2021.1887272
摘要
Background: This in vitro study was designed to reveal the role of miR-29a in high glucose-induced cellular injury through the modulation of IL-6/STAT3 in diabetic cataracts.Methods: The expression of miR-29a and STAT3 in the lens capsules of patients with or without diabetes was determined by RT-PCR. The levels of the IL-6 proinflammatory cytokine in the aqueous humor were detected by ELISA. HLE B-3 cells were cultured in normal glucose (NG; 5 mM) or high glucose (HG; 40 mM). After transfection with miR-29a, si-STAT3, or a negative control vector, the levels of IL-6 and STAT3 were detected. A CCK-8 assay was used to determine cell viability. We used flow cytometry to assess changes in reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis induced by oxidative stress. Western blotting was used to determine the expression of the oxidative injury markers superoxide dismutase (SOD) and malondialdehyde (MDA) and the apoptosis markers Bcl-2 and Bax.Results: Reduced miR-29a, increased STAT3 expression, and IL-6 release were demonstrated in the lens capsules and aqueous humor of patients with diabetes. The stimulation of apoptosis and the loss of MMP induced by HG were attenuated by transfection with a miR-29a mimic and si-STAT3. ROS production, increased MDA content, decreased SOD activity, and upregulation of the apoptotic proteins Bcl-2/Bax were also partially alleviated by miR-29a overexpression, which shows their roles in oxidative injury. Furthermore, transfection with a STAT3 overexpression vector reversed the effects of miR-29a.Conclusions: In conclusion, miR-29a mitigated HG-induced oxidative injury and exerted protective effects via IL-6/STAT3 signaling. Thus, miR-29a may be a potential therapeutic agent for diabetic cataracts.
科研通智能强力驱动
Strongly Powered by AbleSci AI