检出限
电化学发光
碳纳米管
材料科学
光热治疗
线性范围
电极
电子转移
纳米技术
化学
分析化学(期刊)
光化学
色谱法
物理化学
作者
Fang Dai,Yitian Huang,Shupei Zhang,Hong Dai,Zhensheng Hong,Yanyu Lin
标识
DOI:10.1016/j.electacta.2020.135790
摘要
Herein, an ultrasensitive label-free electrochemiluminescence (ECL) immunosensor based on electrocatalytic and photothermal amplification was constructed and was applied to detect Thyroglobulin (Tg). Single-walled carbon nanotube (SWCNTs) with charming merits was used as supporter for porous NiCo2O4 nanosheets (pNiCo2O4 NSs), the formed pNiCo2O4 NSs/SWCNTs hybrids was utilized as an effective matrix and realized multiple signal amplification. To be specific, pNiCo2O4 NSs/SWCNTs hybrids on the one hand can facilitate the electron transfer and enhance ECL signal. On the other hand can catalyze the oxygen evolution reaction (OER) to increase the concentration of dissolved O2 for further strengthening ECL signal. What’s more, the pNiCo2O4 NSs/SWCNTs hybrids had a strong near-infrared harvesting capability, can convert laser energy into heat to increase the electrode surface temperature, resulting in the significant enhancement in ECL signal. Based on excellent properties of pNiCo2O4 NSs/SWCNTs hybrids, a highly-efficient label-free ECL immunosensor was developed and exhibited a wide linear range (10−5 ng/mL to 100 ng/mL) and a low detection limit (3.3 × 10−6 ng/mL) for Tg determination, which was approximately 7.1 fold-lower than at room temperature. This work provided a new thought for high-performance ECL sensing platform construction.
科研通智能强力驱动
Strongly Powered by AbleSci AI