Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins

人工神经网络 线性回归 构造盆地 气象学 缺少数据 环境科学 数学 计算机科学 地理 地质学 统计 人工智能 古生物学
作者
Zhangli Sun,Di Long,Wenting Yang,Xueying Li,Yun Pan
出处
期刊:Water Resources Research [Wiley]
卷期号:56 (4) 被引量:173
标识
DOI:10.1029/2019wr026250
摘要

Abstract Launched in May 2018, the Gravity Recovery and Climate Experiment Follow‐On mission (GRACE‐FO)—the successor of the erstwhile GRACE mission—monitors changes in total water storage, which is a critical state variable of the regional and global hydrologic cycles. However, the gap between data of the two missions is breaking the continuity of the observations and limiting its further application. In this study, we used three learning‐based models, that is, deep neural network, multiple linear regression (MLR), and seasonal autoregressive integrated moving average with exogenous variables, and six GRACE solutions (i.e., Jet Propulsion Laboratory spherical harmonics (JPL‐SH), Center for Space Research SH (CSR‐SH), GeoforschungsZentrum Potsdam SH (GFZ‐SH), JPL mass concentration blocks (mascons) (JPL‐M), CSR mascons (CSR‐M), and Goddard Space Flight Center mascons (GSFC‐M)) to reconstruct the missing monthly data at a grid cell scale. Evaluation showed that the three learning‐based models were reliable for the reconstruction of GRACE data in areas with humid and no/low human interventions. The deep neural network models slightly outperformed the seasonal autoregressive integrated moving average with exogenous variables models and significantly outperformed the multiple linear regression models in most of 60 basins studied. The three GRACE mascon data sets performed better than the SH data sets at the basin scale. The models with SH solutions showed similar performance, but the models with the mascon solutions varied markedly in some basins. Results of this study are expected to provide a reference for bridging the data gaps between the GRACE and GRACE‐FO satellites and for selecting suitable GRACE solutions for regional hydrologic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
然也发布了新的文献求助10
刚刚
1秒前
真陈完成签到,获得积分10
2秒前
文6完成签到 ,获得积分10
3秒前
九九发布了新的文献求助10
3秒前
SisiZheng完成签到,获得积分20
3秒前
成就念芹完成签到,获得积分10
4秒前
Hello应助拼搏的犀牛采纳,获得10
4秒前
爱学习的YY完成签到 ,获得积分10
4秒前
椰子冻完成签到,获得积分10
5秒前
6秒前
桐桐应助轻松的小白菜采纳,获得10
6秒前
6秒前
7秒前
wangyu发布了新的文献求助10
7秒前
风清扬发布了新的文献求助10
7秒前
852应助zkygmu采纳,获得10
8秒前
邵珠洋完成签到,获得积分10
8秒前
饭饭看文献完成签到,获得积分10
8秒前
星辰大海应助哈哈哈采纳,获得10
10秒前
10秒前
2339822272发布了新的文献求助10
11秒前
手抓饼啊发布了新的文献求助20
11秒前
ignih发布了新的文献求助10
12秒前
活力水瑶发布了新的文献求助10
12秒前
77发布了新的文献求助10
13秒前
啦啦啦啦完成签到 ,获得积分10
13秒前
sumugeng完成签到,获得积分10
14秒前
Forrest给Forrest的求助进行了留言
15秒前
吼吼哈嘿完成签到 ,获得积分10
15秒前
十二完成签到 ,获得积分10
16秒前
Fay应助科研通管家采纳,获得10
17秒前
ymjssg应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得30
17秒前
十三应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537