Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins

人工神经网络 线性回归 构造盆地 气象学 缺少数据 环境科学 数学 计算机科学 地理 地质学 统计 人工智能 古生物学
作者
Zhangli Sun,Di Long,Wenting Yang,Xueying Li,Yun Pan
出处
期刊:Water Resources Research [Wiley]
卷期号:56 (4) 被引量:173
标识
DOI:10.1029/2019wr026250
摘要

Abstract Launched in May 2018, the Gravity Recovery and Climate Experiment Follow‐On mission (GRACE‐FO)—the successor of the erstwhile GRACE mission—monitors changes in total water storage, which is a critical state variable of the regional and global hydrologic cycles. However, the gap between data of the two missions is breaking the continuity of the observations and limiting its further application. In this study, we used three learning‐based models, that is, deep neural network, multiple linear regression (MLR), and seasonal autoregressive integrated moving average with exogenous variables, and six GRACE solutions (i.e., Jet Propulsion Laboratory spherical harmonics (JPL‐SH), Center for Space Research SH (CSR‐SH), GeoforschungsZentrum Potsdam SH (GFZ‐SH), JPL mass concentration blocks (mascons) (JPL‐M), CSR mascons (CSR‐M), and Goddard Space Flight Center mascons (GSFC‐M)) to reconstruct the missing monthly data at a grid cell scale. Evaluation showed that the three learning‐based models were reliable for the reconstruction of GRACE data in areas with humid and no/low human interventions. The deep neural network models slightly outperformed the seasonal autoregressive integrated moving average with exogenous variables models and significantly outperformed the multiple linear regression models in most of 60 basins studied. The three GRACE mascon data sets performed better than the SH data sets at the basin scale. The models with SH solutions showed similar performance, but the models with the mascon solutions varied markedly in some basins. Results of this study are expected to provide a reference for bridging the data gaps between the GRACE and GRACE‐FO satellites and for selecting suitable GRACE solutions for regional hydrologic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助今年我必胖20斤采纳,获得10
刚刚
1秒前
1秒前
小林发布了新的文献求助30
2秒前
2秒前
失眠烨华发布了新的文献求助10
2秒前
weiyu_u发布了新的文献求助30
3秒前
小程同学完成签到 ,获得积分10
3秒前
boltos发布了新的文献求助10
3秒前
舒适灵完成签到,获得积分10
4秒前
lkjh完成签到,获得积分10
4秒前
冷静飞柏发布了新的文献求助10
5秒前
zlf完成签到,获得积分10
5秒前
李爱国应助晚星采纳,获得10
5秒前
大模型应助君君采纳,获得10
5秒前
丘比特应助君君采纳,获得10
5秒前
开心人达完成签到,获得积分10
5秒前
5秒前
雪白的千雁完成签到 ,获得积分10
6秒前
6秒前
7秒前
冷静太君完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
pineapple yang完成签到,获得积分10
8秒前
qweasdzxcqwe发布了新的文献求助10
8秒前
namin完成签到,获得积分10
9秒前
rico完成签到,获得积分10
9秒前
顺顺安完成签到,获得积分10
9秒前
a水爱科研发布了新的文献求助10
10秒前
橙子才是唯一的水果完成签到,获得积分10
10秒前
hongw_liu完成签到,获得积分10
10秒前
烩面大师发布了新的文献求助10
12秒前
北欧海盗完成签到,获得积分10
12秒前
赘婿应助如初采纳,获得10
13秒前
lmy完成签到 ,获得积分10
13秒前
靓丽安珊完成签到,获得积分10
13秒前
orixero应助勤恳的从波采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600