BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs

生物识别 计算机科学 脑电图 模式识别(心理学) 鉴定(生物学) 人工智能 语音识别 神经科学 心理学 植物 生物
作者
Min Wang,Jiankun Hu,Hussein A. Abbass
出处
期刊:Pattern Recognition [Elsevier]
卷期号:105: 107381-107381 被引量:78
标识
DOI:10.1016/j.patcog.2020.107381
摘要

Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ming完成签到,获得积分10
1秒前
CodeCraft应助超级的伟泽采纳,获得10
1秒前
1秒前
1秒前
Jasper应助song采纳,获得10
1秒前
陈隆发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
安徽梁朝伟完成签到,获得积分10
2秒前
小蘑菇应助忆diann采纳,获得10
3秒前
aaaaa发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助30
4秒前
ll完成签到,获得积分10
4秒前
alex发布了新的文献求助10
6秒前
6秒前
7秒前
tao发布了新的文献求助10
9秒前
在水一方应助大大大骁采纳,获得10
9秒前
小春卷完成签到,获得积分10
9秒前
10秒前
大模型应助无情夏槐采纳,获得10
10秒前
10秒前
Ava应助刘思琪采纳,获得10
10秒前
11秒前
嗖嗖完成签到,获得积分10
12秒前
王李俊完成签到 ,获得积分10
12秒前
12秒前
12秒前
揽星色应助芝士采纳,获得10
12秒前
YQP发布了新的文献求助10
13秒前
13秒前
sunny发布了新的文献求助10
13秒前
14秒前
vkey完成签到,获得积分10
14秒前
zln完成签到,获得积分10
15秒前
今后应助大意的饼干采纳,获得30
15秒前
16秒前
执着尔竹完成签到,获得积分10
16秒前
16秒前
科目三应助陈隆采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730427
求助须知:如何正确求助?哪些是违规求助? 5323178
关于积分的说明 15318794
捐赠科研通 4876955
什么是DOI,文献DOI怎么找? 2619793
邀请新用户注册赠送积分活动 1569164
关于科研通互助平台的介绍 1525773