已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs

生物识别 计算机科学 脑电图 模式识别(心理学) 鉴定(生物学) 人工智能 语音识别 神经科学 心理学 植物 生物
作者
Min Wang,Jiankun Hu,Hussein A. Abbass
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:105: 107381-107381 被引量:78
标识
DOI:10.1016/j.patcog.2020.107381
摘要

Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ycwang完成签到,获得积分10
3秒前
Mr.F发布了新的文献求助10
3秒前
大个应助ememem采纳,获得10
3秒前
gdsfgdf完成签到 ,获得积分10
7秒前
成就的笑南完成签到 ,获得积分10
8秒前
8秒前
大模型应助如意小丸子采纳,获得10
8秒前
科研废物完成签到,获得积分10
10秒前
思源应助肯瑞恩哭哭采纳,获得10
11秒前
嘻嘻哈哈应助外向电脑采纳,获得10
11秒前
韦老虎完成签到,获得积分20
12秒前
拾陆完成签到 ,获得积分10
13秒前
崔伊凡完成签到 ,获得积分10
14秒前
和谐冬卉发布了新的文献求助10
14秒前
ferritin完成签到 ,获得积分10
15秒前
16秒前
洸彦完成签到 ,获得积分10
17秒前
18秒前
风几里完成签到 ,获得积分10
19秒前
22秒前
欧皇完成签到,获得积分20
23秒前
24秒前
24秒前
24秒前
科西西完成签到,获得积分10
24秒前
柏木了完成签到 ,获得积分10
26秒前
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
DX完成签到 ,获得积分10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得30
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
ememem发布了新的文献求助10
29秒前
29秒前
和谐冬卉完成签到,获得积分20
33秒前
如意小丸子完成签到,获得积分10
36秒前
科研通AI2S应助坐忘道采纳,获得10
44秒前
111发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253316
求助须知:如何正确求助?哪些是违规求助? 4416731
关于积分的说明 13750447
捐赠科研通 4289094
什么是DOI,文献DOI怎么找? 2353235
邀请新用户注册赠送积分活动 1349978
关于科研通互助平台的介绍 1309772