BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs

生物识别 计算机科学 脑电图 模式识别(心理学) 鉴定(生物学) 人工智能 语音识别 神经科学 心理学 植物 生物
作者
Min Wang,Jiankun Hu,Hussein A. Abbass
出处
期刊:Pattern Recognition [Elsevier]
卷期号:105: 107381-107381 被引量:78
标识
DOI:10.1016/j.patcog.2020.107381
摘要

Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duke完成签到,获得积分10
刚刚
1秒前
Owen应助111采纳,获得10
3秒前
星辰大海应助111采纳,获得10
3秒前
小蘑菇应助宋德宇采纳,获得10
4秒前
4秒前
脑洞疼应助痴情的冰淇淋采纳,获得10
4秒前
4秒前
5秒前
金皮卡发布了新的文献求助10
5秒前
无情的牛马完成签到,获得积分10
5秒前
汉堡包应助xiaowu采纳,获得10
6秒前
7秒前
orange发布了新的文献求助10
9秒前
9秒前
9秒前
balelalala完成签到 ,获得积分20
10秒前
苦行僧发布了新的文献求助10
11秒前
11秒前
Ssyong发布了新的文献求助10
14秒前
Owen应助xmhxpz采纳,获得10
15秒前
科研通AI2S应助Shuo采纳,获得10
15秒前
科研通AI2S应助甜甜语海采纳,获得10
16秒前
Ava应助yuan采纳,获得10
16秒前
17秒前
zzzz完成签到,获得积分20
17秒前
17秒前
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得20
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
晓晓来了发布了新的文献求助10
20秒前
xiaowu完成签到,获得积分20
20秒前
21秒前
22秒前
xiaowu发布了新的文献求助10
23秒前
neinei发布了新的文献求助10
23秒前
23秒前
VANGOGH发布了新的文献求助20
25秒前
26秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218137
求助须知:如何正确求助?哪些是违规求助? 2867491
关于积分的说明 8156426
捐赠科研通 2534366
什么是DOI,文献DOI怎么找? 1366941
科研通“疑难数据库(出版商)”最低求助积分说明 644892
邀请新用户注册赠送积分活动 617939