BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs

生物识别 计算机科学 脑电图 模式识别(心理学) 鉴定(生物学) 人工智能 语音识别 神经科学 心理学 植物 生物
作者
Min Wang,Jiankun Hu,Hussein A. Abbass
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:105: 107381-107381 被引量:78
标识
DOI:10.1016/j.patcog.2020.107381
摘要

Research on brain biometrics using electroencephalographic (EEG) signals has received increasing attentions in recent years. In particular, it has been recognized that the brain functional connectivity reflects individual variability. However, many questions need to be answered before we can properly use distinctive characteristics of brain connectivity for biometric applications. This paper proposes a graph-based method for EEG biometric identification. It consists of a network estimation module to generate brain connectivity networks and a graph analysis module to generate topological features based on brain networks. Specifically, we investigate seven different connectivity metrics for the network estimation module, each of which is characterized by a certain signal interaction mechanism, defining a peculiar subjective brain network. A new connectivity metric is proposed based on the algorithmic complexity of EEG signals from a information-theoretic perspective. Meanwhile, six nodal features and six global features are proposed and studied for the graph analysis module. A comprehensive evaluation is carried out to assess the impact of different connectivity metrics, graph features, and EEG frequency bands on biometric identification performance. The results demonstrate that the graph-based method proposed in this study is effective in improving the recognition rate and inter-state stability of EEG-based biometric identification systems. Our findings about the network patterns and graph features bring a further understanding of distinctiveness of humans’ EEG functional connectivity and provide useful guidance for the design of graph-based EEG biometric systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
阿斯师大发布了新的文献求助20
刚刚
刚刚
霜风款冬发布了新的文献求助10
1秒前
1秒前
李治海完成签到,获得积分10
1秒前
奔波霸完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助郭晓琦采纳,获得10
2秒前
夙夙完成签到,获得积分10
3秒前
孙刚发布了新的文献求助10
3秒前
quhayley发布了新的文献求助30
3秒前
晚灯君发布了新的文献求助10
4秒前
demian发布了新的文献求助10
5秒前
5秒前
5秒前
Jasper应助hp571采纳,获得10
5秒前
5秒前
天天快乐应助李治海采纳,获得10
6秒前
可达燊完成签到,获得积分10
6秒前
今后应助小怪兽采纳,获得10
7秒前
小晟完成签到,获得积分10
7秒前
小鹿呀完成签到,获得积分10
7秒前
Connie完成签到,获得积分10
7秒前
uu发布了新的文献求助10
7秒前
一只鱼的故事完成签到,获得积分10
8秒前
流星完成签到,获得积分10
9秒前
liyizhe完成签到 ,获得积分10
9秒前
9秒前
徐风年完成签到,获得积分10
10秒前
猕猴桃发布了新的文献求助30
11秒前
11秒前
刘源发布了新的文献求助10
11秒前
12秒前
glanceofwind完成签到 ,获得积分10
12秒前
可达燊发布了新的文献求助50
12秒前
Akim应助kk采纳,获得10
12秒前
传奇3应助爱听歌的寄云采纳,获得10
13秒前
xW12123完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635