材料科学
硫化
无定形碳
无定形固体
杂原子
化学工程
碳纳米管
碳化
阳极
碳纤维
金属
纳米技术
结晶学
电极
物理化学
化学
有机化学
冶金
复合材料
硫黄
工程类
复合数
扫描电子显微镜
戒指(化学)
作者
Ning Fu,Ying Liu,Rui Liu,Xiaodong Wang,Zhenglong Yang
出处
期刊:Small
[Wiley]
日期:2020-04-24
卷期号:16 (20)
被引量:40
标识
DOI:10.1002/smll.202001607
摘要
Abstract Nearly inexhaustible sodium sources on earth make sodium ion batteries (SIBs) the best candidate for large‐scale energy storage. However, the main obstacles faced by SIBs are the low rate performance and poor cycle stability caused by the large size of Na + ions. Herein, a universal strategy for synthesizing amorphous metals encapsulated into amorphous B, N co‐doped carbon (a‐M@a‐BCN; M = Co, Ni, Mn) nanotubes by metal cation‐assisted carbonization is explored. The methodology allows tailoring the structures (e.g., length, wall thickness, and metals doping) of a‐M@a‐BCN nannotubes at the molecular level. Furthermore, the amorphous metal sulfide encapsulated into a‐BCN (a‐MS x @a‐BCN; MS x : CoS, Ni 3 S 2 , MnS) nanotubes are obtained by one‐step sulfidation process. The a‐M@a‐BCN and a‐MS x @a‐BCN possess the larger interlayer spacing (0.40 nm) amorphous carbon nanotube rich in heteroatoms active sites, making them exhibit excellent Na + ions diffusion kinetics and capacitive storage behavior. As SIBs anodes, they show high capacity, excellent rate performance, and long cycle stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI