Detecting malicious accounts in permissionless blockchains using temporal graph properties

计算机科学 图形 数据挖掘 余弦相似度 人工智能 聚类系数 聚类分析 节点(物理) 机器学习 理论计算机科学 结构工程 工程类
作者
Rachit Agarwal,Shikhar Barve,Sandeep K. Shukla
出处
期刊:Applied Network Science [Springer Nature]
卷期号:6 (1) 被引量:29
标识
DOI:10.1007/s41109-020-00338-3
摘要

Abstract Directed Graph based models of a blockchain that capture accounts as nodes and transactions as edges, evolve over time. This temporal nature of a blockchain model enables us to understand the behavior (malicious or benign) of the accounts. Predictive classification of accounts as malicious or benign could help users of the permissionless blockchain platforms to operate in a secure manner. Motivated by this, we introduce temporal features such as burst and attractiveness on top of several already used graph properties such as the node degree and clustering coefficient. Using identified features, we train various Machine Learning (ML) models and identify the algorithm that performs the best in detecting malicious accounts. We then study the behavior of the accounts over different temporal granularities of the dataset before assigning them malicious tags. For the Ethereum blockchain, we identify that for the entire dataset—the ExtraTreesClassifier performs the best among supervised ML algorithms. On the other hand, using cosine similarity on top of the results provided by unsupervised ML algorithms such as K-Means on the entire dataset, we were able to detect 554 more suspicious accounts. Further, using behavior change analysis for accounts, we identify 814 unique suspicious accounts across different temporal granularities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
置身事内应助科研通管家采纳,获得30
刚刚
大模型应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
Ma发布了新的文献求助10
2秒前
lalala发布了新的文献求助20
2秒前
3秒前
3秒前
3秒前
小杨完成签到,获得积分10
4秒前
5秒前
123发布了新的文献求助10
6秒前
Ma完成签到,获得积分10
7秒前
llcllc发布了新的文献求助10
7秒前
子车半烟完成签到,获得积分10
8秒前
9秒前
Emmalee完成签到,获得积分10
9秒前
Susan完成签到,获得积分10
10秒前
LucienS发布了新的文献求助10
12秒前
12秒前
所所应助GAO采纳,获得10
14秒前
falling_learning完成签到 ,获得积分10
15秒前
欧阳铭发布了新的文献求助10
18秒前
丘比特应助Emmalee采纳,获得30
18秒前
彭于晏应助马66采纳,获得10
19秒前
19秒前
19秒前
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578