基因沉默
细胞凋亡
缺氧(环境)
细胞生物学
TLR3型
化学
能量代谢
线粒体
生物
内分泌学
生物化学
基因
Toll样受体
先天免疫系统
氧气
受体
有机化学
作者
Han Zhang,Xiufang Zou,Feng Liu
标识
DOI:10.1016/j.cellsig.2020.109779
摘要
Noncoding RNAs are interweaved in pathological processes in myocardial ischemia (MI), such as long noncoding RNA (lncRNA) and microRNAs (miRNAs). The aim of this study was to figure out the role of Testis-specific transcript Y-linked 15 (TTTY15) and let-7i-5p in cell model of MI in cardiomyocytes. Hypoxia-induced cell injury was assessed by Cell counting kit 8 assay, flow cytometry, commercial kits and western blotting. As a result, hypoxia stress induced inhibition on cell proliferation, glucose uptake, and ATP production, and promotion on apoptosis, lactate dehydrogenase (LDH) release, and lactic acid production in human cardiomyocyte AC16 cells. During hypoxia injury, expression of TTTY15 and let-7i-5p was measured by real-time quantitative polymerase chain reaction, and TTTY15 was upregulated, accompanied with let-7i-5p downregulation. Functionally, either silencing TTTY15 or overexpressing let-7i-5p could attenuate hypoxia-induced apoptosis and mitochondrial energy metabolism dysfunction in AC16 cells. Moreover, there was an interaction between TTTY15 and let-7i-5p via target binding, as evidenced by dual-luciferase reporter assay and RNA immunoprecipitation assay. Knockdown of let-7i-5p could counteract the protective role of TTTY15 deletion in hypoxic AC16 cells. Meanwhile, toll-like receptor 3 (TLR3)/nuclear factor-kappa B (NF-κB) signaling was validated by western blotting. Expression of TLR3, tumor necrosis factor receptor-associated factor 6 (TRAF6) and phosphorylated p65 was promoted in hypoxic AC16 cells, which was abrogated by TTTY15 silencing along with let-7i-5p upregulation. Collectively, TTTY15 knockdown protects cardiomyocytes against hypoxia-induced apoptosis and mitochondrial energy metabolism dysfunction in vitro through let-7i-5p/TLR3/NF-κB pathway to suppress.
科研通智能强力驱动
Strongly Powered by AbleSci AI