PWStableNet: Learning Pixel-Wise Warping Maps for Video Stabilization

图像扭曲 人工智能 计算机科学 像素 计算机视觉 稳健性(进化) 特征(语言学) 残余物 深度学习 单应性 视图合成 编码器 模式识别(心理学) 数学 渲染(计算机图形) 算法 统计 操作系统 哲学 基因 射影空间 生物化学 语言学 投射试验 化学
作者
Minda Zhao,Qiang Ling
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3582-3595 被引量:45
标识
DOI:10.1109/tip.2019.2963380
摘要

As the videos captured by hand-held cameras are often perturbed by high-frequency jitters, stabilization of these videos is an essential task. Many video stabilization methods have been proposed to stabilize shaky videos. However, most methods estimate one global homography or several homographies based on fixed meshes to warp the shaky frames into their stabilized views. Due to the existence of parallax, such single or a few homographies can not well handle the depth variation. In contrast to these traditional methods, we propose a novel video stabilization network, called PWStableNet, which comes up pixel-wise warping maps, i.e., potentially different warping for different pixels, and stabilizes each pixel to its stabilized view. To our best knowledge, this is the first deep learning based pixel-wise video stabilization. The proposed method is built upon a multi-stage cascade encoder-decoder architecture and learns pixel-wise warping maps from consecutive unstable frames. Inter-stage connections are also introduced to add feature maps of a former stage to the corresponding feature maps at a latter stage, which enables the latter stage to learn the residual from the feature maps of former stages. This cascade architecture can produce more precise warping maps at latter stages. To ensure the correct learning of pixel-wise warping maps, we use a well-designed loss function to guide the training procedure of the proposed PWStableNet. The proposed stabilization method achieves comparable performance with traditional methods, but stronger robustness and much faster processing speed. Moreover, the proposed stabilization method outperforms some typical CNN-based stabilization methods, especially in videos with strong parallax. Codes will be provided at https://github.com/mindazhao/pix-pix-warping-video-stabilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Hammerdai采纳,获得10
刚刚
1秒前
牙牙完成签到,获得积分10
1秒前
云深完成签到 ,获得积分10
1秒前
2秒前
gu发布了新的文献求助10
2秒前
Owen应助1111采纳,获得10
3秒前
4秒前
小宋发布了新的文献求助10
4秒前
4秒前
繁荣的代秋完成签到,获得积分10
5秒前
orixero应助稳重的玫瑰采纳,获得10
5秒前
忠诚的谢夫涅完成签到,获得积分10
5秒前
zzm完成签到,获得积分10
5秒前
6秒前
shenna发布了新的文献求助30
7秒前
星星又累发布了新的文献求助20
7秒前
7秒前
wangziminimin发布了新的文献求助10
7秒前
Jasper应助AltairKing采纳,获得10
8秒前
9秒前
噗噗发布了新的文献求助10
9秒前
FashionBoy应助sabet采纳,获得10
9秒前
9秒前
9秒前
9秒前
念头发布了新的文献求助10
9秒前
11秒前
11秒前
所所应助幼柚采纳,获得10
12秒前
zzm发布了新的文献求助10
12秒前
wiyo527发布了新的文献求助30
12秒前
13秒前
思源应助含蓄的小熊猫采纳,获得10
13秒前
Hello应助纯情的碧玉采纳,获得10
13秒前
13秒前
小二郎应助粗心的智慧采纳,获得10
13秒前
小宋完成签到,获得积分10
14秒前
高妖丽发布了新的文献求助10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393