Semi-Supervised Learning with Scarce Annotations

计算机科学 过度拟合 杠杆(统计) 自举(财务) 利用 人工智能 机器学习 学习迁移 代表(政治) 标记数据 钥匙(锁) 班级(哲学) 半监督学习 数据点 数据挖掘 数学 人工神经网络 计量经济学 政治 法学 计算机安全 政治学
作者
Sylvestre-Alvise Rebuffi,Sébastien Ehrhardt,Kai Han,Andrea Vedaldi,Andrew Zisserman
标识
DOI:10.1109/cvprw50498.2020.00389
摘要

While semi-supervised learning (SSL) algorithms provide an efficient way to make use of both labelled and unlabelled data, they generally struggle when the number of annotated samples is very small. In this work, we consider the problem of SSL multi-class classification with very few labelled instances. We introduce two key ideas. The first is a simple but effective one: we leverage the power of transfer learning among different tasks and self-supervision to initialize a good representation of the data without making use of any label. The second idea is a new algorithm for SSL that can exploit well such a pre-trained representation. The algorithm works by alternating two phases, one fitting the labelled points and one fitting the unlabelled ones, with carefully-controlled information flow between them. The benefits are greatly reducing overfitting of the labelled data and avoiding issue with balancing labelled and unlabelled losses during training. We show empirically that this method can successfully train competitive models with as few as 10 labelled data points per class. More in general, we show that the idea of bootstrapping features using self-supervised learning always improves SSL on standard benchmarks. We show that our algorithm works increasingly well compared to other methods when refining from other tasks or datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茂密的头发完成签到,获得积分10
1秒前
1秒前
Hongsong发布了新的文献求助10
2秒前
勤恳马里奥完成签到,获得积分0
3秒前
3秒前
yzy发布了新的文献求助10
3秒前
4秒前
4秒前
科目三应助AA采纳,获得10
4秒前
4秒前
Elaine发布了新的文献求助10
4秒前
Elaine发布了新的文献求助10
4秒前
Elaine发布了新的文献求助10
4秒前
Elaine发布了新的文献求助10
4秒前
roy完成签到 ,获得积分10
5秒前
Akashi发布了新的文献求助10
5秒前
李爱国应助茂密的头发采纳,获得10
5秒前
张时婕完成签到 ,获得积分10
5秒前
小胖鱼发布了新的文献求助10
5秒前
不许焦绿o完成签到,获得积分10
6秒前
pcr163应助zhanzhanzhan采纳,获得50
6秒前
6秒前
SweepingMonk应助EthanChan采纳,获得10
6秒前
爆米花应助二豆子0采纳,获得10
7秒前
科研通AI5应助Mian采纳,获得10
7秒前
CodeCraft应助酒九采纳,获得10
7秒前
星辰大海应助不喝可乐采纳,获得10
7秒前
7秒前
8秒前
WJ发布了新的文献求助10
8秒前
JamesPei应助落寞的紫山采纳,获得10
8秒前
平常的不平完成签到,获得积分10
9秒前
系统提示发布了新的文献求助10
9秒前
盛yyyy完成签到,获得积分10
9秒前
合适山河发布了新的文献求助10
10秒前
周星星完成签到 ,获得积分10
10秒前
NexusExplorer应助潦草采纳,获得10
10秒前
ZHEN发布了新的文献求助10
11秒前
艺玲发布了新的文献求助10
12秒前
dddddddio完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740