Semi-Supervised Learning with Scarce Annotations

计算机科学 过度拟合 杠杆(统计) 自举(财务) 利用 人工智能 机器学习 学习迁移 代表(政治) 标记数据 钥匙(锁) 班级(哲学) 半监督学习 数据点 数据挖掘 数学 人工神经网络 计算机安全 政治 政治学 法学 计量经济学
作者
Sylvestre-Alvise Rebuffi,Sébastien Ehrhardt,Kai Han,Andrea Vedaldi,Andrew Zisserman
标识
DOI:10.1109/cvprw50498.2020.00389
摘要

While semi-supervised learning (SSL) algorithms provide an efficient way to make use of both labelled and unlabelled data, they generally struggle when the number of annotated samples is very small. In this work, we consider the problem of SSL multi-class classification with very few labelled instances. We introduce two key ideas. The first is a simple but effective one: we leverage the power of transfer learning among different tasks and self-supervision to initialize a good representation of the data without making use of any label. The second idea is a new algorithm for SSL that can exploit well such a pre-trained representation. The algorithm works by alternating two phases, one fitting the labelled points and one fitting the unlabelled ones, with carefully-controlled information flow between them. The benefits are greatly reducing overfitting of the labelled data and avoiding issue with balancing labelled and unlabelled losses during training. We show empirically that this method can successfully train competitive models with as few as 10 labelled data points per class. More in general, we show that the idea of bootstrapping features using self-supervised learning always improves SSL on standard benchmarks. We show that our algorithm works increasingly well compared to other methods when refining from other tasks or datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apckkk完成签到 ,获得积分10
1秒前
岁岁平安完成签到,获得积分10
3秒前
传奇3应助一叶扁舟采纳,获得10
3秒前
文光完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
7秒前
枯木逢春应助ark861023采纳,获得10
8秒前
柏林完成签到,获得积分10
8秒前
8秒前
Whale发布了新的文献求助10
9秒前
子车茗应助blance采纳,获得30
10秒前
ibigbird发布了新的文献求助10
11秒前
11秒前
shawn发布了新的文献求助10
12秒前
8R60d8应助0点过后必饿采纳,获得10
12秒前
12秒前
萧水白应助宁阿霜采纳,获得10
13秒前
典雅夜安发布了新的文献求助10
14秒前
科研通AI2S应助dmeng采纳,获得10
16秒前
最卷的卷心菜完成签到,获得积分10
17秒前
大模型应助shangxinyu采纳,获得10
17秒前
17秒前
42发布了新的文献求助10
18秒前
May完成签到,获得积分10
19秒前
21秒前
22秒前
23秒前
23秒前
26秒前
优雅凝蕊完成签到,获得积分10
27秒前
嘻嘻完成签到,获得积分20
28秒前
ZYN完成签到 ,获得积分10
28秒前
28秒前
齐天大圣完成签到,获得积分10
28秒前
thirty发布了新的文献求助10
29秒前
xyrehab给xyrehab的求助进行了留言
29秒前
失眠哈密瓜完成签到 ,获得积分10
30秒前
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231221
求助须知:如何正确求助?哪些是违规求助? 2878324
关于积分的说明 8205848
捐赠科研通 2545777
什么是DOI,文献DOI怎么找? 1375414
科研通“疑难数据库(出版商)”最低求助积分说明 647390
邀请新用户注册赠送积分活动 622448