Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics

代谢组学 化学 电喷雾电离 代谢物 非线性系统 质谱法 代谢组 信号(编程语言) 生物系统 校准曲线 分析化学(期刊) 色谱法 生物化学 计算机科学 检出限 物理 生物 量子力学 程序设计语言
作者
Huaxu Yu,Shipei Xing,Lorenz Nierves,Philipp F. Lange,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (10): 7011-7019 被引量:27
标识
DOI:10.1021/acs.analchem.0c00246
摘要

The nonlinear signal response of electrospray ionization (ESI) presents a critical limitation for mass spectrometry (MS)-based quantitative analysis. In the field of metabolomics research, this issue has largely remained unaddressed; MS signal intensities are usually directly used to calculate fold changes for quantitative comparison. In this work, we demonstrate that, due to the nonlinear ESI response, signal intensity ratios of a metabolic feature calculated between two samples may not reflect their real metabolic concentration ratios (i.e., fold-change compression), implying that conventional fold-change calculations directly using MS signal intensities can be misleading. In this regard, we developed a quality control (QC) sample-based signal calibration workflow to overcome the quantitative bias caused by the nonlinear ESI response. In this workflow, calibration curves for every metabolic feature are first established using a QC sample injected in serial injection volumes. The MS signals of each metabolic feature are then calibrated to their equivalent QC injection volumes for comparative analysis. We demonstrated this novel workflow in a targeted metabolite analysis, showing that the accuracy of fold-change calculations can be significantly improved. Furthermore, in a metabolomic comparison of the bone marrow interstitial fluid samples from leukemia patients before and after chemotherapy, an additional 59 significant metabolic features were found with fold changes larger than 1.5, and an additional 97 significant metabolic features had fold changes corrected by more than 0.1. This work enables high-quality quantitative analysis in untargeted metabolomics, thus providing more confident biological hypotheses generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
by6868完成签到,获得积分10
刚刚
1秒前
4秒前
4秒前
Owen应助陈补天采纳,获得10
5秒前
在水一方应助小亿采纳,获得10
5秒前
保安队长完成签到,获得积分10
6秒前
Lucas应助Johnho12047采纳,获得10
8秒前
加油鸭完成签到,获得积分20
8秒前
liuzhifenshen完成签到,获得积分10
8秒前
草莓完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
搜集达人应助马紫婷采纳,获得30
12秒前
小马甲应助kk采纳,获得10
12秒前
12秒前
13秒前
14秒前
陈补天发布了新的文献求助10
16秒前
17秒前
憨憨发布了新的文献求助30
18秒前
Sanche发布了新的文献求助10
18秒前
小亿发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
李爱国应助Asma_2104采纳,获得10
21秒前
金梦丽发布了新的文献求助10
23秒前
ran发布了新的文献求助10
24秒前
24秒前
yxt完成签到,获得积分10
24秒前
25秒前
诚心的傲芙完成签到 ,获得积分10
25秒前
侯mm发布了新的文献求助10
25秒前
27秒前
随缘发布了新的文献求助10
27秒前
28秒前
29秒前
CipherSage应助matt采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323