清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics

代谢组学 化学 电喷雾电离 代谢物 非线性系统 质谱法 代谢组 信号(编程语言) 生物系统 校准曲线 分析化学(期刊) 色谱法 生物化学 计算机科学 检出限 物理 量子力学 生物 程序设计语言
作者
Huaxu Yu,Shipei Xing,Lorenz Nierves,Philipp F. Lange,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (10): 7011-7019 被引量:27
标识
DOI:10.1021/acs.analchem.0c00246
摘要

The nonlinear signal response of electrospray ionization (ESI) presents a critical limitation for mass spectrometry (MS)-based quantitative analysis. In the field of metabolomics research, this issue has largely remained unaddressed; MS signal intensities are usually directly used to calculate fold changes for quantitative comparison. In this work, we demonstrate that, due to the nonlinear ESI response, signal intensity ratios of a metabolic feature calculated between two samples may not reflect their real metabolic concentration ratios (i.e., fold-change compression), implying that conventional fold-change calculations directly using MS signal intensities can be misleading. In this regard, we developed a quality control (QC) sample-based signal calibration workflow to overcome the quantitative bias caused by the nonlinear ESI response. In this workflow, calibration curves for every metabolic feature are first established using a QC sample injected in serial injection volumes. The MS signals of each metabolic feature are then calibrated to their equivalent QC injection volumes for comparative analysis. We demonstrated this novel workflow in a targeted metabolite analysis, showing that the accuracy of fold-change calculations can be significantly improved. Furthermore, in a metabolomic comparison of the bone marrow interstitial fluid samples from leukemia patients before and after chemotherapy, an additional 59 significant metabolic features were found with fold changes larger than 1.5, and an additional 97 significant metabolic features had fold changes corrected by more than 0.1. This work enables high-quality quantitative analysis in untargeted metabolomics, thus providing more confident biological hypotheses generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
14秒前
芙瑞完成签到 ,获得积分10
30秒前
43秒前
lutos发布了新的文献求助10
48秒前
54秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
平常以云完成签到 ,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
bogula1112完成签到 ,获得积分10
2分钟前
lilyzhang2023完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
drhwang完成签到,获得积分10
3分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
单薄水星发布了新的文献求助10
4分钟前
4分钟前
lutos发布了新的文献求助10
4分钟前
hoy完成签到 ,获得积分10
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
林楚棋完成签到 ,获得积分10
5分钟前
务实的初蝶完成签到 ,获得积分10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
5分钟前
Yuki完成签到 ,获得积分10
5分钟前
小珂完成签到,获得积分10
5分钟前
清秀LL完成签到 ,获得积分10
5分钟前
山东大煎饼完成签到,获得积分10
6分钟前
lllyjs完成签到 ,获得积分10
6分钟前
wuqi完成签到 ,获得积分10
7分钟前
大医仁心完成签到 ,获得积分10
7分钟前
7分钟前
小小虾完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685602
关于积分的说明 14838712
捐赠科研通 4672541
什么是DOI,文献DOI怎么找? 2538338
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965