Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺语蓉完成签到 ,获得积分10
刚刚
木子小微完成签到,获得积分10
刚刚
活着完成签到 ,获得积分10
刚刚
自信板栗发布了新的文献求助10
刚刚
铱铱的胡萝卜完成签到,获得积分10
1秒前
chem完成签到,获得积分10
2秒前
3秒前
carlitos发布了新的文献求助10
3秒前
凶狠的雁芙完成签到,获得积分10
3秒前
3秒前
3秒前
无极微光应助小熊梅尼耶采纳,获得20
4秒前
4秒前
petrichor完成签到,获得积分10
5秒前
Redamancy完成签到,获得积分20
5秒前
Asuka完成签到 ,获得积分10
6秒前
李健应助韩晨晨采纳,获得20
6秒前
专注白昼完成签到,获得积分10
7秒前
孙军涛发布了新的文献求助10
7秒前
8秒前
秋日繁星发布了新的文献求助10
8秒前
健忘的芷荷完成签到,获得积分10
8秒前
嵇灵竹发布了新的文献求助10
9秒前
天天发布了新的文献求助10
9秒前
ldkshifo完成签到,获得积分10
9秒前
今天摸了吗完成签到,获得积分10
9秒前
科研通AI6应助极客晨风采纳,获得10
11秒前
11秒前
12秒前
12秒前
吱吱吱吱发布了新的文献求助10
13秒前
彭于晏应助爹爹采纳,获得10
14秒前
14秒前
花花花花发布了新的文献求助20
15秒前
hannah发布了新的文献求助10
15秒前
嵇灵竹完成签到,获得积分10
15秒前
RJ123456完成签到,获得积分10
15秒前
16秒前
16秒前
fev123发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249