Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
失眠魔镜发布了新的文献求助10
2秒前
PG发布了新的文献求助10
4秒前
zhonglv7应助值雨采纳,获得10
5秒前
seun发布了新的文献求助10
5秒前
科研通AI6应助yyy采纳,获得10
6秒前
内向的羊青完成签到,获得积分10
6秒前
7秒前
CodeCraft应助zhouleiwang采纳,获得10
8秒前
9秒前
9秒前
忧伤的宝马完成签到,获得积分10
10秒前
LJJ发布了新的文献求助10
10秒前
和谐的芷天完成签到,获得积分10
11秒前
xionggege完成签到,获得积分10
12秒前
14秒前
值雨完成签到,获得积分10
15秒前
星辰大海应助管难破采纳,获得10
16秒前
WuYiHHH完成签到,获得积分10
16秒前
王仁完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
19秒前
JamesPei应助迅速如柏采纳,获得10
22秒前
22秒前
伊叶之丘完成签到 ,获得积分10
23秒前
小鱼儿发布了新的文献求助10
23秒前
PG完成签到,获得积分20
24秒前
24秒前
科研笑川发布了新的文献求助10
24秒前
seun完成签到,获得积分10
25秒前
25秒前
健壮不斜完成签到 ,获得积分10
25秒前
aa完成签到,获得积分10
27秒前
华仔应助zhu采纳,获得30
27秒前
zhuang完成签到,获得积分10
27秒前
28秒前
小马甲应助科研笑川采纳,获得10
30秒前
吕佳蔚发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866