Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17671098402发布了新的文献求助10
2秒前
4秒前
不配.应助波哥采纳,获得10
4秒前
糊涂的芒果应助arisw采纳,获得10
4秒前
bread发布了新的文献求助10
7秒前
扎心发布了新的文献求助10
11秒前
米粒之珠亦放光华完成签到,获得积分20
12秒前
13秒前
15秒前
科研通AI2S应助bread采纳,获得10
17秒前
17秒前
青龙大帝发布了新的文献求助10
17秒前
灰色与青完成签到,获得积分10
18秒前
Chemis锌醛完成签到,获得积分20
19秒前
20秒前
上官若男应助林海采纳,获得10
20秒前
FashionBoy应助DE2022采纳,获得10
21秒前
23秒前
小帕菜完成签到,获得积分10
27秒前
AAAAA完成签到 ,获得积分10
27秒前
29秒前
29秒前
bkagyin应助科研通管家采纳,获得10
30秒前
独特觅翠应助科研通管家采纳,获得20
30秒前
思源应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
李爱国应助科研通管家采纳,获得30
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
顾九思完成签到,获得积分10
34秒前
34秒前
wxl完成签到,获得积分10
35秒前
DE2022发布了新的文献求助10
36秒前
36秒前
CipherSage应助热心电脑采纳,获得10
36秒前
ZOEY发布了新的文献求助10
37秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212316
求助须知:如何正确求助?哪些是违规求助? 2861197
关于积分的说明 8127562
捐赠科研通 2527165
什么是DOI,文献DOI怎么找? 1360756
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615658