Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文一笑发布了新的文献求助10
1秒前
1秒前
MUAL完成签到,获得积分10
2秒前
所所应助RRR采纳,获得10
2秒前
流云发布了新的文献求助20
2秒前
ye完成签到,获得积分10
2秒前
悲凉的小馒头完成签到,获得积分10
2秒前
正直半雪完成签到,获得积分10
2秒前
2秒前
鼠鼠发布了新的文献求助10
4秒前
复杂从梦发布了新的文献求助10
4秒前
xiaomaxia发布了新的文献求助10
5秒前
张发财应助zhendemengshi采纳,获得10
5秒前
WC完成签到,获得积分10
5秒前
Xiaoxiao应助xiaoai采纳,获得10
5秒前
顾矜应助思维隋采纳,获得10
6秒前
务实晓蓝完成签到,获得积分10
6秒前
涂博强发布了新的文献求助30
6秒前
6秒前
hakei完成签到,获得积分10
7秒前
兴奋的听筠关注了科研通微信公众号
7秒前
7秒前
orchid发布了新的文献求助10
7秒前
颜沛文发布了新的文献求助10
9秒前
初心路发布了新的文献求助10
9秒前
Sherry完成签到 ,获得积分10
10秒前
陈家小乖发布了新的文献求助400
11秒前
酷波er应助风清扬采纳,获得10
11秒前
佳佳关注了科研通微信公众号
11秒前
Orange应助11采纳,获得30
12秒前
施宇宙发布了新的文献求助30
12秒前
13秒前
决明完成签到,获得积分10
13秒前
13秒前
kk发布了新的文献求助10
13秒前
14秒前
Koalas应助邓桂灿采纳,获得20
14秒前
14秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183473
求助须知:如何正确求助?哪些是违规求助? 4369781
关于积分的说明 13607386
捐赠科研通 4221555
什么是DOI,文献DOI怎么找? 2315256
邀请新用户注册赠送积分活动 1313969
关于科研通互助平台的介绍 1262801