Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呱呱完成签到 ,获得积分10
刚刚
紫杉罗罗完成签到,获得积分10
刚刚
1秒前
HuaYu发布了新的文献求助10
1秒前
呆呆完成签到,获得积分10
1秒前
万能图书馆应助wulanrui采纳,获得10
1秒前
共享精神应助zzb采纳,获得10
1秒前
vv完成签到,获得积分10
1秒前
冷酷的松思完成签到,获得积分10
1秒前
AYEFORBIDER完成签到,获得积分10
2秒前
善学以致用应助沉静胜采纳,获得10
2秒前
Jsl完成签到,获得积分10
2秒前
打打应助顺利若山采纳,获得10
2秒前
乌苏苏发布了新的文献求助10
2秒前
青秋鱼罐头完成签到,获得积分10
3秒前
1112发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
nicholas完成签到,获得积分10
3秒前
如梦中完成签到,获得积分10
3秒前
智慧女孩完成签到,获得积分10
4秒前
背后白梦完成签到,获得积分10
4秒前
4秒前
4秒前
halo完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
风趣紫发布了新的文献求助10
6秒前
羊十九完成签到,获得积分10
6秒前
Xiaohu发布了新的文献求助10
6秒前
半间歇式聚合反应完成签到 ,获得积分10
6秒前
果粒程完成签到 ,获得积分10
7秒前
所所应助Gin采纳,获得10
7秒前
科研通AI6应助So采纳,获得10
7秒前
L_Cheung完成签到,获得积分10
7秒前
叮当发布了新的文献求助10
7秒前
背后白梦发布了新的文献求助10
8秒前
早起发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652046
求助须知:如何正确求助?哪些是违规求助? 4786625
关于积分的说明 15058014
捐赠科研通 4810687
什么是DOI,文献DOI怎么找? 2573318
邀请新用户注册赠送积分活动 1529217
关于科研通互助平台的介绍 1488138