Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助韶明雪采纳,获得10
刚刚
呜呜给你两拳完成签到,获得积分10
刚刚
风清扬发布了新的文献求助10
1秒前
zjynb666完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
yi发布了新的文献求助10
2秒前
十页的文章完成签到,获得积分10
2秒前
852应助Lixiang采纳,获得100
2秒前
wxs发布了新的文献求助10
2秒前
2秒前
汉堡包应助An采纳,获得10
3秒前
NexusExplorer应助leo采纳,获得10
3秒前
4秒前
糟糕的颜完成签到 ,获得积分10
4秒前
坚定的雁完成签到 ,获得积分10
4秒前
随机昵称发布了新的文献求助30
4秒前
典雅的阑悦完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
淡然善斓发布了新的文献求助10
5秒前
sdd完成签到,获得积分10
5秒前
bible完成签到,获得积分10
6秒前
6秒前
顾矜应助isyfear采纳,获得10
6秒前
6秒前
橘涂初九发布了新的文献求助20
6秒前
ddddd发布了新的文献求助10
6秒前
酷波er应助默默的甜瓜采纳,获得10
6秒前
6秒前
上官若男应助hsa_ID采纳,获得10
6秒前
7秒前
T1aNer299发布了新的文献求助10
7秒前
小谢完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520