亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards

强化学习 计算机科学 马尔可夫决策过程 人工智能 构造(python库) 比例(比率) 过程(计算) 机器学习 领域(数学分析) 状态空间 自主代理人 国家(计算机科学) 方案(数学) 马尔可夫过程 算法 统计 操作系统 量子力学 物理 数学分析 程序设计语言 数学
作者
Chao Wang,Jian Wang,Jingjing Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6180-6190 被引量:126
标识
DOI:10.1109/jiot.2020.2973193
摘要

Unmanned aerial vehicles (UAVs) have the potential in delivering Internet-of-Things (IoT) services from a great height, creating an airborne domain of the IoT. In this article, we address the problem of autonomous UAV navigation in large-scale complex environments by formulating it as a Markov decision process with sparse rewards and propose an algorithm named deep reinforcement learning (RL) with nonexpert helpers (LwH). In contrast to prior RL-based methods that put huge efforts into reward shaping, we adopt the sparse reward scheme, i.e., a UAV will be rewarded if and only if it completes navigation tasks. Using the sparse reward scheme ensures that the solution is not biased toward potentially suboptimal directions. However, having no intermediate rewards hinders the agent from efficient learning since informative states are rarely encountered. To handle the challenge, we assume that a prior policy (nonexpert helper) that might be of poor performance is available to the learning agent. The prior policy plays the role of guiding the agent in exploring the state space by reshaping the behavior policy used for environmental interaction. It also assists the agent in achieving goals by setting dynamic learning objectives with increasing difficulty. To evaluate our proposed method, we construct a simulator for UAV navigation in large-scale complex environments and compare our algorithm with several baselines. Experimental results demonstrate that LwH significantly outperforms the state-of-the-art algorithms handling sparse rewards and yields impressive navigation policies comparable to those learned in the environment with dense rewards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juan完成签到 ,获得积分10
16秒前
27秒前
35秒前
张张发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
42秒前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
yuancw完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Drwang完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
都可以发布了新的文献求助10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
研友_ZGR70n完成签到 ,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
牛八先生完成签到,获得积分10
6分钟前
6分钟前
6分钟前
harrybz发布了新的文献求助10
6分钟前
6分钟前
harrybz完成签到,获得积分10
6分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
yx_cheng应助科研通管家采纳,获得10
7分钟前
不秃燃的小老弟完成签到 ,获得积分10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008346
求助须知:如何正确求助?哪些是违规求助? 3548070
关于积分的说明 11298670
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811188