One-step green and scalable dry synthesis of nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles as high-performance supercapacitor electrode

超级电容器 石墨烯 材料科学 电容 电极 电化学 纳米颗粒 化学工程 纳米技术 氧化物 热解 电流密度 化学 冶金 物理化学 物理 量子力学 工程类
作者
Siyu Su,Liuqin Lai,Rui Wang,Liang Zhang,Yifan Cui,Rong Li,Naili Guo,Wei Shi,Xiaohong Zhu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:834: 154477-154477 被引量:16
标识
DOI:10.1016/j.jallcom.2020.154477
摘要

Advanced electrode materials are of vital importance to the application of high-performance supercapacitors. However, most of the electrode materials are limited by their low specific capacitance and/or poor cycling stability. In this work, nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles (Fe3O4@NG) were synthesized through a simple one-step green and scalable dry pyrolysis method, in which the uniform growth of Fe3O4 nanoparticles with a diameter of about 30–60 nm, the reduction of graphene oxide (GO), and the introduction of nitrogen atoms on graphene could be achieved simultaneously. The structure, composition, and electrochemical performance of the Fe3O4@NG samples were systematically characterized. Compared to pristine Fe3O4, Fe3O4@NG showed superior electrochemical performances, including an ultra-high specific capacitance of up to 740 F g−1 at the current density of 1 A g−1, a greatly improved rate capability of 56.8% with the increase in current density from 1 to 20 A g−1, and an excellent cycling stability with the retention ratio of 90.9% after 3000 cycles. Furthermore, after being placed in the external environment for one year, the specific capacitance retention of Fe3O4@NG could be as high as 98%, proving again that the as-prepared Fe3O4@NG exhibited perfect structural stability and excellent stable electrochemical properties. All of the results demonstrate an extraordinary performance of Fe3O4@NG, thus being potential for future practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助10
3秒前
像个小蛤蟆完成签到 ,获得积分10
4秒前
orixero应助博修采纳,获得10
4秒前
5秒前
咿咿呀呀发布了新的文献求助30
6秒前
Macaco完成签到,获得积分10
7秒前
qweqwe完成签到 ,获得积分10
8秒前
8秒前
8秒前
Gao完成签到,获得积分20
8秒前
人生如梦完成签到,获得积分10
10秒前
10秒前
clever完成签到,获得积分10
11秒前
12秒前
Xander完成签到,获得积分10
12秒前
ssk发布了新的文献求助10
12秒前
13秒前
许子健发布了新的文献求助10
13秒前
标致绮露发布了新的文献求助10
13秒前
16秒前
嗯哼哈哈发布了新的文献求助10
16秒前
T拐拐发布了新的文献求助10
17秒前
luan完成签到,获得积分10
19秒前
烟花应助小紫采纳,获得10
21秒前
21秒前
ornot君君完成签到,获得积分20
24秒前
25秒前
27秒前
研友_X89o6n完成签到,获得积分10
27秒前
28秒前
29秒前
敏感的归头完成签到,获得积分10
29秒前
31秒前
许子健发布了新的文献求助10
31秒前
我只是个丙酮酸完成签到,获得积分10
32秒前
yangyl发布了新的文献求助10
34秒前
37秒前
冷酷的猎豹关注了科研通微信公众号
39秒前
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388