One-step green and scalable dry synthesis of nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles as high-performance supercapacitor electrode

超级电容器 石墨烯 材料科学 电容 电极 电化学 纳米颗粒 化学工程 纳米技术 氧化物 热解 电流密度 化学 冶金 物理化学 物理 量子力学 工程类
作者
Siyu Su,Liuqin Lai,Rui Wang,Liang Zhang,Yifan Cui,Rong Li,Naili Guo,Wei Shi,Xiaohong Zhu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:834: 154477-154477 被引量:16
标识
DOI:10.1016/j.jallcom.2020.154477
摘要

Advanced electrode materials are of vital importance to the application of high-performance supercapacitors. However, most of the electrode materials are limited by their low specific capacitance and/or poor cycling stability. In this work, nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles (Fe3O4@NG) were synthesized through a simple one-step green and scalable dry pyrolysis method, in which the uniform growth of Fe3O4 nanoparticles with a diameter of about 30–60 nm, the reduction of graphene oxide (GO), and the introduction of nitrogen atoms on graphene could be achieved simultaneously. The structure, composition, and electrochemical performance of the Fe3O4@NG samples were systematically characterized. Compared to pristine Fe3O4, Fe3O4@NG showed superior electrochemical performances, including an ultra-high specific capacitance of up to 740 F g−1 at the current density of 1 A g−1, a greatly improved rate capability of 56.8% with the increase in current density from 1 to 20 A g−1, and an excellent cycling stability with the retention ratio of 90.9% after 3000 cycles. Furthermore, after being placed in the external environment for one year, the specific capacitance retention of Fe3O4@NG could be as high as 98%, proving again that the as-prepared Fe3O4@NG exhibited perfect structural stability and excellent stable electrochemical properties. All of the results demonstrate an extraordinary performance of Fe3O4@NG, thus being potential for future practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡然冬灵发布了新的文献求助10
1秒前
共享精神应助辣辣啦采纳,获得10
1秒前
浮游应助哈哈哈采纳,获得10
3秒前
英俊的铭应助哈哈哈采纳,获得10
3秒前
YYYYYY发布了新的文献求助10
4秒前
qzy发布了新的文献求助10
5秒前
song完成签到,获得积分10
7秒前
7秒前
科研通AI5应助斑ban采纳,获得10
7秒前
zoe发布了新的文献求助10
8秒前
今夕何夕完成签到,获得积分10
8秒前
健壮安柏完成签到 ,获得积分10
9秒前
冷酷夏真完成签到 ,获得积分10
10秒前
英俊的铭应助l0000采纳,获得10
10秒前
lqhccww发布了新的文献求助10
11秒前
木头人发布了新的文献求助10
11秒前
huzi完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
可耐的青雪完成签到,获得积分10
16秒前
seventonight2完成签到,获得积分10
16秒前
orixero应助积极擎汉采纳,获得10
17秒前
17秒前
半颗橙子发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
wen_xxx完成签到,获得积分20
21秒前
瓦学弟的妈妈完成签到 ,获得积分20
21秒前
科研通AI5应助妩媚的夏烟采纳,获得10
21秒前
22秒前
王博涵发布了新的文献求助10
22秒前
SciGPT应助卑微学术人采纳,获得10
23秒前
科研通AI6应助黄康采纳,获得10
23秒前
23秒前
Duwei_2024完成签到,获得积分20
23秒前
wen_xxx发布了新的文献求助10
25秒前
wang完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4990525
求助须知:如何正确求助?哪些是违规求助? 4239541
关于积分的说明 13207087
捐赠科研通 4033986
什么是DOI,文献DOI怎么找? 2207081
邀请新用户注册赠送积分活动 1218204
关于科研通互助平台的介绍 1136404