Tetraspanin Proteins Mediate Cellular Penetration, Invasion, and Fusion Events and Define a Novel Type of Membrane Microdomain

四斯潘宁 脂质微区 生物 细胞生物学 免疫突触 微泡 细胞 T细胞 遗传学 小RNA 免疫系统 T细胞受体 基因
作者
Martin E. Hemler
出处
期刊:Annual Review of Cell and Developmental Biology [Annual Reviews]
卷期号:19 (1): 397-422 被引量:742
标识
DOI:10.1146/annurev.cellbio.19.111301.153609
摘要

This review summarizes key aspects of tetraspanin proteins, with a focus on the functional relevance and structural features of these proteins and how they are organized into a novel type of membrane microdomain. Despite the size of the tetraspanin family and their abundance and wide distribution over many cell types, most have not been studied. However, from studies of prototype tetraspanins, information regarding functions, cell biology, and structural organization has begun to emerge. Genetic evidence points to critical roles for tetraspanins on oocytes during fertilization, in fungi during leaf invasion, in Drosophila embryos during neuromuscular synapse formation, during T and B lymphocyte activation, in brain function, and in retinal degeneration. From structure and mutagenesis studies, we are beginning to understand functional subregions within tetraspanins, as well as the levels of connections among tetraspanins and their many associated proteins. Tetraspanin-enriched microdomains (TEMs) are emerging as entities physically and functionally distinct from lipid rafts. These microdomains now provide a context in which to evaluate tetraspanins in the regulation of growth factor signaling and in the modulation of integrin-mediated post-cell adhesion events. Finally, the enrichment of tetraspanins within secreted vesicles called exosomes, coupled with hints that tetraspanins may regulate vesicle fusion and/or fission, suggests exciting new directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shiwo110完成签到,获得积分10
1秒前
1秒前
领导范儿应助178181采纳,获得10
1秒前
2秒前
3秒前
武科大发布了新的文献求助10
3秒前
莫妮卡.宾发布了新的文献求助20
3秒前
4秒前
5秒前
完美世界应助河马的香蕉采纳,获得10
6秒前
郑爱学习发布了新的文献求助10
7秒前
我是老大应助自然沛槐采纳,获得10
7秒前
zsping发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
若无完成签到 ,获得积分10
10秒前
上帝开玩笑完成签到,获得积分10
10秒前
小羊发布了新的文献求助10
11秒前
科研通AI5应助潇潇微雨采纳,获得30
12秒前
Owen应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
星辰大海应助潇潇微雨采纳,获得10
12秒前
华仔应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
科研通AI5应助潇潇微雨采纳,获得10
12秒前
虚心抽屉完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
17秒前
六六完成签到,获得积分10
17秒前
完美世界应助鱼鱼色采纳,获得10
18秒前
18秒前
淡淡的雪发布了新的文献求助10
18秒前
敢敢完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514713
求助须知:如何正确求助?哪些是违规求助? 3097077
关于积分的说明 9233948
捐赠科研通 2792083
什么是DOI,文献DOI怎么找? 1532271
邀请新用户注册赠送积分活动 711879
科研通“疑难数据库(出版商)”最低求助积分说明 707045