猕猴
神经科学
心理学
运动前神经元活动
固定(群体遗传学)
电生理学
相关性
生物
数学
几何学
生物化学
基因
作者
Tadashi Ogawa,Hidehiko Komatsu
标识
DOI:10.1152/jn.01066.2009
摘要
Previous studies have suggested that spontaneous fluctuations in neuronal activity reflect intrinsic functional brain architecture. Inspired by these findings, we analyzed baseline neuronal activity in the monkey frontal eye field (FEF; a visuomotor area) and area V4 (a visual area) during the fixation period of a cognitive behavioral task in the absence of any task-specific stimuli or behaviors. Specifically, we examined the temporal storage capacity of the instantaneous discharge rate in FEF and V4 neurons by calculating the correlation of the spike count in a bin with that in another bin during the baseline activity of a trial. We found that most FEF neurons fired significantly more (or less) in one bin if they fired more (or less) in another bin within a trial, even when these two time bins were separated by hundreds of milliseconds. By contrast, similar long time-lag correlations were observed in only a small fraction of V4 neurons, indicating that temporal correlations were considerably stronger in FEF compared with those in V4 neurons. Additional analyses revealed that the findings were not attributable to other task-related variables or ongoing behavioral performance, suggesting that the differences in temporal correlation strength reflect differences in intrinsic structural and functional architecture between visual and visuomotor areas. Thus FEF neurons probably play a greater role than V4 neurons in neural circuits responsible for temporal storage in activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI