Structural reliability analysis for implicit performance function using radial basis function network

径向基函数 人工神经网络 可靠性(半导体) 计算机科学 径向基函数网络 算法 感知器 功能(生物学) 一般化 基础(线性代数) 人工智能 应用数学 数学 量子力学 进化生物学 生物 物理 数学分析 功率(物理) 几何学
作者
Jian Deng
出处
期刊:International Journal of Solids and Structures [Elsevier]
卷期号:43 (11-12): 3255-3291 被引量:125
标识
DOI:10.1016/j.ijsolstr.2005.05.055
摘要

This is the second paper of our work on structural reliability analysis for implicit performance function. The first paper proposed structural reliability analysis methods using multilayer perceptron artificial neural network [Deng, J., Gu, D.S., Li, X.B., Yue, Z.Q., 2005. Structural reliability analysis for implicit performance function using artificial neural network. Structural Safety 25 (1), 25–48]. This paper presents three radial basis function network (RBF) based reliability analysis methods, i.e. RBF based MCS, RBF based FORM, and RBF based SORM. In these methods, radial basis function network technique is adopted to model and approximate the implicit performance functions or partial derivatives. The RBF technique uses a small set of the actual data of the implicit performance functions, which are obtained via physical experiments or normal numerical analysis such as finite element methods for the complicated structural system, and are used to develop a trained RBF generalization algorithm. Then a large number of the function values and partial derivatives of implicit performance functions can be readily obtained by simply extracting information from the established and successfully trained RBF network. These function values and derivatives are used in conventional MCS, FORM or SORM to constitute RBF based reliability analysis algorithms. Examples are presented in the paper to illustrate how the proposed RBF based methods are used in structural reliability analysis. The results are well compared with those obtained by the conventional reliability methods such as the Monte-Carlo simulation, multilayer perceptrons networks, the response surface method, the FORM method 2, and so on. The examples showed the proposed approach is applicable to structural reliability analysis involving implicit performance functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
醉爱天下完成签到,获得积分10
1秒前
甜橙汁完成签到,获得积分10
1秒前
红红酱发布了新的文献求助10
2秒前
2秒前
1210xi完成签到,获得积分10
2秒前
所所应助whitebird采纳,获得10
2秒前
王旋烦着呢完成签到,获得积分10
2秒前
分歧者咋咋完成签到,获得积分10
2秒前
默己完成签到 ,获得积分10
3秒前
梁海萍发布了新的文献求助10
4秒前
帅帅的叔完成签到,获得积分10
4秒前
老Mark完成签到,获得积分10
4秒前
万幸鹿完成签到,获得积分10
4秒前
科目三应助gaoyankai采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
xyw发布了新的文献求助10
4秒前
5秒前
枫莘梓发布了新的文献求助10
5秒前
ccm应助huhu采纳,获得10
5秒前
6秒前
美好闭月发布了新的文献求助10
6秒前
fucccboi完成签到,获得积分10
7秒前
沨祈完成签到,获得积分10
7秒前
感动板凳完成签到,获得积分10
7秒前
丘山杉完成签到,获得积分10
8秒前
www完成签到,获得积分10
9秒前
9秒前
傲娇的寇发布了新的文献求助10
9秒前
9秒前
chen完成签到,获得积分10
9秒前
王丹靖完成签到 ,获得积分10
10秒前
yvye完成签到,获得积分10
10秒前
汉堡包应助GuangqinMa采纳,获得10
10秒前
文艺的元菱完成签到,获得积分10
10秒前
whuhustwit发布了新的文献求助10
10秒前
开车请系安全带完成签到,获得积分20
11秒前
11秒前
hahahaha完成签到,获得积分10
11秒前
英姑应助刀刀刀采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477622
求助须知:如何正确求助?哪些是违规求助? 4579414
关于积分的说明 14368860
捐赠科研通 4507608
什么是DOI,文献DOI怎么找? 2470080
邀请新用户注册赠送积分活动 1457006
关于科研通互助平台的介绍 1431013