New extension of the Kalman filter to nonlinear systems

扩展卡尔曼滤波器 不变扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 卡尔曼滤波器 估计员 稳健性(进化) 协方差 线性化 协方差交集 线性系统 非线性滤波器 非线性系统 滤波器(信号处理) 数学 滤波器设计 人工智能 计算机视觉 统计 数学分析 物理 基因 量子力学 化学 生物化学 控制(管理)
作者
Simon Julier,Jeffrey Uhlmann
出处
期刊:Proceedings of SPIE 被引量:5069
标识
DOI:10.1117/12.280797
摘要

The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearizes all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterize mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalizes elegantly to nonlinear systems without the linearization steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhy发布了新的文献求助10
刚刚
刚刚
ceeray23应助霜降采纳,获得10
1秒前
1秒前
llyllylly完成签到,获得积分10
2秒前
2秒前
2秒前
无极微光应助123456采纳,获得20
3秒前
4秒前
桐桐应助眼睛大心情采纳,获得10
4秒前
wenrui完成签到 ,获得积分10
5秒前
5秒前
阿靖完成签到,获得积分10
6秒前
Caroline发布了新的文献求助10
6秒前
亚亚呀发布了新的文献求助10
6秒前
7秒前
脑洞疼应助真吾采纳,获得10
7秒前
7秒前
7秒前
美好斓发布了新的文献求助10
8秒前
段志豪完成签到,获得积分10
8秒前
8秒前
yu完成签到 ,获得积分10
8秒前
Megan发布了新的文献求助10
9秒前
FashionBoy应助lwq采纳,获得10
9秒前
Fiee发布了新的文献求助20
9秒前
陈卓完成签到 ,获得积分10
9秒前
酷波er应助TranYan采纳,获得10
10秒前
kmelo发布了新的文献求助10
10秒前
仲冬卉完成签到,获得积分10
10秒前
霜降完成签到,获得积分10
10秒前
11秒前
11秒前
DDDD发布了新的文献求助10
13秒前
13秒前
bgistone发布了新的文献求助10
13秒前
Hello应助一只小郭采纳,获得10
13秒前
qingde发布了新的文献求助10
13秒前
猪猪侠完成签到,获得积分10
13秒前
FF完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569810
求助须知:如何正确求助?哪些是违规求助? 4655144
关于积分的说明 14710842
捐赠科研通 4596139
什么是DOI,文献DOI怎么找? 2522284
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464032