New extension of the Kalman filter to nonlinear systems

扩展卡尔曼滤波器 不变扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 卡尔曼滤波器 估计员 稳健性(进化) 协方差 线性化 协方差交集 线性系统 非线性滤波器 非线性系统 滤波器(信号处理) 数学 滤波器设计 人工智能 计算机视觉 统计 数学分析 物理 基因 量子力学 化学 生物化学 控制(管理)
作者
Simon Julier,Jeffrey Uhlmann
出处
期刊:Proceedings of SPIE 被引量:5069
标识
DOI:10.1117/12.280797
摘要

The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearizes all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterize mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalizes elegantly to nonlinear systems without the linearization steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
wy应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
1秒前
千筹发布了新的文献求助10
1秒前
刘月茹发布了新的文献求助10
1秒前
小二郎应助温暖白容采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得30
1秒前
ccm应助科研通管家采纳,获得10
1秒前
GTY发布了新的文献求助50
1秒前
海边的卡夫卡完成签到,获得积分10
1秒前
乐空思应助科研通管家采纳,获得50
1秒前
1秒前
1秒前
1秒前
随便发布了新的文献求助10
1秒前
AN应助科研通管家采纳,获得10
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
嘿嘿应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
鲨鱼发布了新的文献求助10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
longer发布了新的文献求助10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994