New extension of the Kalman filter to nonlinear systems

扩展卡尔曼滤波器 不变扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 卡尔曼滤波器 估计员 稳健性(进化) 协方差 线性化 协方差交集 线性系统 非线性滤波器 非线性系统 滤波器(信号处理) 数学 滤波器设计 人工智能 计算机视觉 统计 数学分析 物理 基因 量子力学 化学 生物化学 控制(管理)
作者
Simon Julier,Jeffrey Uhlmann
出处
期刊:Proceedings of SPIE 被引量:5069
标识
DOI:10.1117/12.280797
摘要

The Kalman Filter (KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearizes all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterize mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalizes elegantly to nonlinear systems without the linearization steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕孤独的香蕉完成签到,获得积分10
刚刚
zg发布了新的文献求助10
刚刚
刚刚
1秒前
baobaoxiong完成签到,获得积分10
1秒前
1秒前
1秒前
隐形曼青应助雨碎寒江采纳,获得10
1秒前
1111111完成签到,获得积分10
3秒前
曦颜完成签到 ,获得积分10
3秒前
3秒前
三三发布了新的文献求助10
3秒前
3秒前
wwww发布了新的文献求助10
3秒前
轻松惜筠完成签到,获得积分10
4秒前
4秒前
5秒前
彼岸完成签到,获得积分10
5秒前
研友_pLw3vL发布了新的文献求助10
5秒前
Young完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
6秒前
HeWang发布了新的文献求助10
6秒前
Nia发布了新的文献求助10
6秒前
Akim应助wwww采纳,获得10
6秒前
6秒前
6秒前
7秒前
无花果应助133采纳,获得10
7秒前
JiangZaiqing发布了新的文献求助10
7秒前
8秒前
俊逸子默应助好好学习采纳,获得10
8秒前
8秒前
艳艳子完成签到,获得积分10
8秒前
平淡忻发布了新的文献求助10
9秒前
liying完成签到,获得积分10
9秒前
9秒前
军师完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386