Algorithm-driven optimization of cryopreservation protocols for transfusion model cell types including Jurkat cells and mesenchymal stem cells

Jurkat细胞 间充质干细胞 低温保存 细胞 细胞生物学 计算机科学 生物 免疫学 T细胞 免疫系统 生物化学 胚胎
作者
Kathryn Pollock,Joseph W. Budenske,David H. McKenna,Peter I. Dosa,Allison Hubel
出处
期刊:Journal of Tissue Engineering and Regenerative Medicine [Wiley]
卷期号:11 (10): 2806-2815 被引量:34
标识
DOI:10.1002/term.2175
摘要

This investigation describes the use of a differential evolution (DE) algorithm to optimize cryopreservation solution compositions and cooling rates for specific cell types. Jurkat cells (a lymphocyte model cell type) and mesenchymal stem cells (MSCs) were combined with non-DMSO solutions at concentrations dictated by a DE algorithm. The cells were then frozen in 96-well plates at DE algorithm-dictated cooling rates in the range 0.5–10°C/min. The DE algorithm was iterated until convergence resulted in identification of an optimum solution composition and cooling rate, which occurred within six to nine generations (seven to 10 experiments) for both cell types. The optimal composition for cryopreserving Jurkat cells included 300 mm trehalose, 10% glycerol and 0.01% ectoine (TGE) at 10°C/min. The optimal composition for cryopreserving MSCs included 300 mm ethylene glycol, 1 mm taurine and 1% ectoine (SEGA) at 1°C/min. High-throughput concentration studies verified the optimum identified by the DE algorithm. Vial freezing experiments showed that experimental solutions of TGE at 10°C/min resulted in significantly higher viability for Jurkat cells than DMSO at 1°C/min, while experimental solutions of SEGA at 10°C/min resulted in significantly higher recovery for MSCs than DMSO at 1°C/min; these results were solution- and cell type-specific. Implementation of the DE algorithm permits optimization of multicomponent freezing solutions in a rational, accelerated fashion. This technique can be applied to optimize freezing conditions, which vary by cell type, with significantly fewer experiments than traditional methods. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助时尚觅松采纳,获得10
刚刚
Hello应助Jenny采纳,获得10
3秒前
所所应助欢欢采纳,获得10
4秒前
Dik发布了新的文献求助10
5秒前
icey发布了新的文献求助10
6秒前
7秒前
追光者关注了科研通微信公众号
9秒前
11秒前
eiland发布了新的文献求助10
13秒前
千寒完成签到,获得积分10
14秒前
Dik完成签到,获得积分20
14秒前
berg发布了新的文献求助10
16秒前
16秒前
安静幻枫完成签到,获得积分0
16秒前
xxyyrr完成签到,获得积分10
17秒前
17秒前
月是故乡明完成签到,获得积分20
19秒前
20秒前
悦耳的城发布了新的文献求助10
20秒前
21秒前
23秒前
因你常乐发布了新的文献求助10
24秒前
可爱的函函应助点点滴滴采纳,获得10
25秒前
25秒前
26秒前
ClaudiaY0发布了新的文献求助10
27秒前
29秒前
ydning33发布了新的文献求助20
29秒前
追光者发布了新的文献求助10
30秒前
32秒前
情怀应助因你常乐采纳,获得10
32秒前
Singularity应助科研通管家采纳,获得10
32秒前
Singularity应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
汉堡包应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
小南发布了新的文献求助10
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416214
求助须知:如何正确求助?哪些是违规求助? 3017901
关于积分的说明 8883001
捐赠科研通 2705481
什么是DOI,文献DOI怎么找? 1483630
科研通“疑难数据库(出版商)”最低求助积分说明 685769
邀请新用户注册赠送积分活动 680897