适体
DNA
聚合酶链反应
退火(玻璃)
化学
色谱法
分析化学(期刊)
分子生物学
生物
材料科学
生物化学
基因
复合材料
作者
Mohammad Heiat,Reza Ranjbar,Ali Mohammad Latifi,Mohammad Javad Rasaee,Gholamreza Farnoosh
摘要
Asymmetric PCR, a simple method to generate single-stranded DNA (ssDNA) aptamers in systematic evaluation of ligand by exponential enrichments rounds, is coupled with limitations. We investigated the essential strategies for optimization of conditions to perform a high-quality asymmetric PCR. Final concentrations of primers and template, the number of PCR cycles, and annealing temperature were selected as optimizing variables. The qualities of visualized PCR products were analyzed by ImageJ software. The highest proportion of interested DNA than unwanted products was considered as optimum conditions. Results revealed that the best values for primers ratio, final template concentration, annealing temperature, and PCR cycles were, respectively, 30:1, 1 ng/μL, 55 °C, and 20 cycles for the first and 50:1, 2 ng/μL, 59 °C, and 20 cycles for other rounds. No significant difference was found between optimized asymmetric PCR results in the rounds of two to eight (P > 0.05). The ssDNA quality in round 10 was significantly better than other rounds (P < 0.05). Generally, the ssDNA product with less dimers, double-stranded DNA (dsDNA), and smear are preferable. The dsDNA contamination is the worst, because it can act as antidote and inhibits aptameric performance. Therefore, to choose the best conditions, the lower amount of dsDNA is more important than other unwanted products.
科研通智能强力驱动
Strongly Powered by AbleSci AI