化学物理
材料科学
相(物质)
扩散
热扩散率
离子
表面扩散
化学
热力学
吸附
物理化学
有机化学
物理
作者
Yiyang Li,Hungru Chen,Kipil Lim,Haitao Deng,Jongwoo Lim,Dimitrios Fraggedakis,Peter M. Attia,Sang Chul Lee,Norman Jin,Jože Moškon,Zixuan Guan,William E. Gent,Jihyun Hong,Young-Sang Yu,Miran Gaberšček,M. Saïful Islam,Martin Z. Bazant,William C. Chueh
出处
期刊:Nature Materials
[Springer Nature]
日期:2018-09-13
卷期号:17 (10): 915-922
被引量:120
标识
DOI:10.1038/s41563-018-0168-4
摘要
Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiXFePO4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiXFePO4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. This work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids. Phase transformations driven by compositional change require mass flux across a phase boundary. Lithium migration in LiXFePO4 along the solid/liquid interface now suggests that surface diffusion contributes to tuning phase transformation in anisotropic solids.
科研通智能强力驱动
Strongly Powered by AbleSci AI