电化学
阳极
材料科学
商业化
纳米技术
生化工程
钠
计算机科学
化学
工程类
冶金
电极
业务
物理化学
营销
作者
Xiaoming Dou,Ivana Hasa,Damien Saurel,Christoph Vaalma,Li‐Ming Wu,Daniel Buchholz,Dominic Bresser,Shinichi Komaba,Stefano Passerini
标识
DOI:10.1016/j.mattod.2018.12.040
摘要
Hard carbons are extensively studied for application as anode materials in sodium-ion batteries, but only recently a great interest has been focused toward the understanding of the sodium storage mechanism and the comprehension of the structure–function correlation. Although several interesting mechanisms have been proposed, a general mechanism explaining the observed electrochemical processes is still missing, which is essentially originating from the remaining uncertainty on the complex hard carbons structure. The achievement of an in-depth understanding of the processes occurring upon sodiation, however, is of great importance for a rational design of optimized anode materials. In this review, we aim at providing a comprehensive overview of the up-to-date known structural models of hard carbons and their correlation with the proposed models for the sodium-ion storage mechanisms. In this regard, a particular focus is set on the most powerful analytical tools to study the structure of hard carbons (upon de-/sodiation) and a critical discussion on how to interpret and perform such analysis. Targeting the eventual commercialization of hard carbon anodes for sodium-ion batteries – after having established a fundamental understanding – we close this review with a careful evaluation of potential strategies to ensure a high degree of sustainability, since this is undoubtedly a crucial parameter to take into account for the future large-scale production of hard carbons.
科研通智能强力驱动
Strongly Powered by AbleSci AI