Deep-learning-based seismic data interpolation: A preliminary result

插值(计算机图形学) 计算机科学 混叠 深度学习 卷积神经网络 线性插值 缺少数据 算法 残余物 特征(语言学) 人工智能 模式识别(心理学) 机器学习 图像(数学) 欠采样 哲学 语言学
作者
Benfeng Wang,Ning Zhang,Wenkai Lu,J. P. Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (1): V11-V20 被引量:294
标识
DOI:10.1190/geo2017-0495.1
摘要

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾安应助菲菲采纳,获得10
刚刚
pluto应助菲菲采纳,获得10
刚刚
华仔应助菲菲采纳,获得10
刚刚
汉堡包应助菲菲采纳,获得10
刚刚
liu完成签到,获得积分10
刚刚
张利双发布了新的文献求助30
3秒前
在北榄跳伞的西梅完成签到,获得积分10
4秒前
麦克完成签到,获得积分10
4秒前
5秒前
清樾完成签到 ,获得积分10
7秒前
7秒前
酷酷的盼波完成签到,获得积分10
9秒前
9秒前
痴情的博超应助zzz33采纳,获得10
9秒前
9秒前
11秒前
陆啊陆发布了新的文献求助10
11秒前
lm发布了新的文献求助10
12秒前
12秒前
张艺馨发布了新的文献求助10
13秒前
15秒前
虾虾完成签到 ,获得积分10
15秒前
16秒前
王雯雯发布了新的文献求助10
17秒前
SYLH应助青晨采纳,获得10
18秒前
19秒前
林文隆完成签到,获得积分10
19秒前
斯文败类应助上上采纳,获得10
22秒前
yznfly应助Shuo Yang采纳,获得40
22秒前
开心千青发布了新的文献求助10
23秒前
23秒前
酷酷的冰真应助FOB采纳,获得30
24秒前
孤独翠柏发布了新的文献求助10
25秒前
月亮驳回了Orange应助
25秒前
25秒前
26秒前
星辰大海应助小邢一定行采纳,获得10
28秒前
高高发布了新的文献求助10
28秒前
可可完成签到,获得积分10
31秒前
CHENG_2025应助糊涂的芷天采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962822
求助须知:如何正确求助?哪些是违规求助? 3508736
关于积分的说明 11142697
捐赠科研通 3241520
什么是DOI,文献DOI怎么找? 1791604
邀请新用户注册赠送积分活动 872987
科研通“疑难数据库(出版商)”最低求助积分说明 803517