已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-learning-based seismic data interpolation: A preliminary result

插值(计算机图形学) 计算机科学 混叠 深度学习 卷积神经网络 线性插值 缺少数据 算法 残余物 特征(语言学) 人工智能 模式识别(心理学) 机器学习 图像(数学) 欠采样 哲学 语言学
作者
Benfeng Wang,Ning Zhang,Wenkai Lu,Jialin Wang
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (1): V11-V20 被引量:224
标识
DOI:10.1190/geo2017-0495.1
摘要

Seismic data interpolation is a longstanding issue. Most current methods are only suitable for randomly missing cases. To deal with regularly missing cases, an antialiasing strategy should be included. However, seismic survey design using a random distribution of shots and receivers is always operationally challenging and impractical. We have used deep-learning-based approaches for seismic data antialiasing interpolation, which could extract deeper features of the training data in a nonlinear way by self-learning. It can also avoid linear events, sparsity, and low-rank assumptions of the traditional interpolation methods. Based on convolutional neural networks, eight-layers residual learning networks (ResNets) with a better back-propagation property for deep layers is designed for interpolation. Detailed training analysis is also performed. A set of simulated data is used to train the designed ResNets. The performance is assessed with several synthetic and field data. Numerical examples indicate that the trained ResNets can help to reconstruct regularly missing traces with high accuracy. The interpolated results in the time-space domain and the frequency-wavenumber ([Formula: see text]-[Formula: see text]) domain demonstrate the validity of the trained ResNets. Even though the accuracy decreases with the increase of the feature difference between the test and training data, the proposed method can still provide reasonable interpolation results. Finally, the trained ResNets is used to reconstruct dense data with halved trace intervals for synthetic and field data. The reconstructed dense data are more continuous along the spatial direction, and the spatial aliasing effects disappear in the [Formula: see text]-[Formula: see text] domain. The reconstructed dense data have the potential to improve the accuracy of subsequent seismic data processing and inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
未来可期发布了新的文献求助30
4秒前
Faust完成签到,获得积分10
4秒前
一二三亖完成签到,获得积分10
4秒前
乐乐应助阿饼采纳,获得30
4秒前
jcd发布了新的文献求助10
6秒前
敏感以旋完成签到 ,获得积分10
7秒前
7秒前
Doraemon完成签到 ,获得积分10
8秒前
momo发布了新的文献求助10
10秒前
李爱国应助小晨要发papper采纳,获得10
12秒前
Ternura发布了新的文献求助10
12秒前
迷途发布了新的文献求助10
13秒前
enli完成签到,获得积分10
16秒前
小马甲应助迷途采纳,获得10
17秒前
bkagyin应助Liao采纳,获得10
19秒前
21秒前
tym关注了科研通微信公众号
21秒前
北区小阿神完成签到,获得积分10
23秒前
852应助Ternura采纳,获得10
24秒前
26秒前
可爱的函函应助corre采纳,获得10
28秒前
29秒前
29秒前
abc发布了新的文献求助10
32秒前
dingding发布了新的文献求助10
33秒前
Cheney发布了新的文献求助10
33秒前
Dingyiren发布了新的文献求助20
34秒前
基围虾完成签到,获得积分10
39秒前
坚强的严青应助丁又菡采纳,获得70
39秒前
miao完成签到 ,获得积分10
40秒前
鱼鱼发布了新的文献求助10
40秒前
42秒前
文静的人雄完成签到,获得积分10
43秒前
43秒前
烟花应助abc采纳,获得10
43秒前
传奇3应助zhou采纳,获得10
45秒前
李兴完成签到 ,获得积分10
46秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146415
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825766
捐赠科研通 2454165
什么是DOI,文献DOI怎么找? 1306196
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503