Diagnosis of drowning, an everlasting challenge in Forensic Medicine: review of the litterature and proposal of a diagnostic algorithm

窒息 医学诊断 法医学 算法 医学 医疗急救 计算机科学 法律工程学 重症监护医学 工程类 病理 儿科 兽医学
作者
Gian Luca Marella,Alessandro Feola,Luigi Tonino Marsella,Silvestro Mauriello,Pasquale Giugliano,Giovanni Arcudi
标识
DOI:10.19193/0393-6384_2019_2_140
摘要

Introduction: The diagnosis of drowning is one of the major challenges in the field of forensic medicine and usually it is a “diagnosis of exclusion.” Traditionally, the post-mortem diagnosis of drowning is based on the combination in one diagnosis both the alterations, caused by the type of asphyxia, and those due to the thanatological changes, caused by the duration of the corpse in water. Due to the development of technologies in forensic sciences this approach results actually obsolete. The purpose of this study was to design and propose an algorithm that diagnoses drowning. Materials and method: A review of the papers published in forensic pathology literature was performed using multiple combinations of search terms were used to select scientific research about drowning on PubMed. Conclusion: The methodology used up to now, which was based on external and internal findings, is not very effective, bringing together in one analysis the alterations in the body depending on the type of asphyxia and the thanatological expression of the permanence of the corpse in water. The technological evolution in the medicolegal field has, therefore, encouraged us to use more sophisticated investigations by assigning the diagnosis not only according to autopsy finding. The algorithm we propose has the purpose of guaranteeing a diagnosis based on uniform criteria that contribute to formulating a diagnosis of drowning that is reliable and coherent, while using the available survey tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助111采纳,获得10
刚刚
笑颜完成签到,获得积分20
1秒前
2秒前
zz发布了新的文献求助10
4秒前
SYLH应助勤劳怜寒采纳,获得10
5秒前
5秒前
你可真行发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Jasper应助香蕉静芙采纳,获得10
8秒前
共享精神应助傻傻的老四采纳,获得10
9秒前
9秒前
小福发布了新的文献求助10
10秒前
单薄东蒽完成签到,获得积分10
10秒前
blue完成签到 ,获得积分10
10秒前
10秒前
11秒前
瀼瀼完成签到,获得积分10
11秒前
11秒前
11秒前
张浩威发布了新的文献求助10
12秒前
木子青山发布了新的文献求助10
13秒前
13秒前
SYLH应助科研小菜采纳,获得20
13秒前
14秒前
zpp关注了科研通微信公众号
14秒前
Xingkun_li完成签到,获得积分10
15秒前
Zyk发布了新的文献求助10
15秒前
搜集达人应助wangdi采纳,获得10
15秒前
ExtroGod发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
张浩威完成签到,获得积分10
17秒前
Wu发布了新的文献求助10
17秒前
gg发布了新的文献求助10
17秒前
不舍天真发布了新的文献求助10
17秒前
18秒前
19秒前
星星轨迹完成签到,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743686
求助须知:如何正确求助?哪些是违规求助? 3286292
关于积分的说明 10049820
捐赠科研通 3002847
什么是DOI,文献DOI怎么找? 1648551
邀请新用户注册赠送积分活动 784665
科研通“疑难数据库(出版商)”最低求助积分说明 750787