A systematic survey of computer-aided diagnosis in medicine: Past and present developments

计算机科学 数据科学 人工智能
作者
Juri Yanase,Evangelos Triantaphyllou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:138: 112821-112821 被引量:115
标识
DOI:10.1016/j.eswa.2019.112821
摘要

Abstract Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts, they can be considered as expert systems in medicine. Furthermore, CAD systems in medicine may process clinical data that can be complex and/or massive in size. They do so in order to infer new knowledge from data and use that knowledge to improve their diagnostic performance over time. Therefore, such systems can also be viewed as intelligent systems because they use a feedback mechanism to improve their performance over time. The main aim of the literature survey described in this paper is to provide a comprehensive overview of past and current CAD developments. This survey/review can be of significant value to researchers and professionals in medicine and computer science. There are already some reviews about specific aspects of CAD in medicine. However, this paper focuses on the entire spectrum of the capabilities of CAD systems in medicine. It also identifies the key developments that have led to today's state-of-the-art in this area. It presents an extensive and systematic literature review of CAD in medicine, based on 251 carefully selected publications. While medicine and computer science have advanced dramatically in recent years, each area has also become profoundly more complex. This paper advocates that in order to further develop and improve CAD, it is required to have well-coordinated work among researchers and professionals in these two constituent fields. Finally, this survey helps to highlight areas where there are opportunities to make significant new contributions. This may profoundly impact future research in medicine and in select areas of computer science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuyu发布了新的文献求助10
1秒前
樱岛流京子完成签到,获得积分10
1秒前
1秒前
科研通AI6应助林白采纳,获得30
2秒前
Hmzek完成签到,获得积分10
2秒前
海豹发布了新的文献求助10
2秒前
闲听花落发布了新的文献求助10
2秒前
3秒前
小灵通发布了新的文献求助10
3秒前
机灵的友儿完成签到,获得积分10
3秒前
Oui完成签到 ,获得积分10
3秒前
3秒前
魅影发布了新的文献求助10
3秒前
3秒前
bkagyin应助forever采纳,获得10
4秒前
斗罗大陆完成签到,获得积分10
4秒前
双目识林完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
完美世界应助栗子采纳,获得10
8秒前
子怡完成签到,获得积分10
8秒前
进击的PhD应助等一轮明月采纳,获得30
9秒前
Bey完成签到,获得积分10
9秒前
NexusExplorer应助keke采纳,获得10
10秒前
10秒前
Lina完成签到,获得积分10
10秒前
orixero应助yuyu采纳,获得10
10秒前
小羊发布了新的文献求助10
11秒前
XYN发布了新的文献求助30
11秒前
打打应助huangchengzi采纳,获得10
12秒前
asdfzxcv应助阳静采纳,获得10
12秒前
shirui0906284完成签到 ,获得积分10
13秒前
白踏歌发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803