A systematic survey of computer-aided diagnosis in medicine: Past and present developments

计算机科学 数据科学 人工智能
作者
Juri Yanase,Evangelos Triantaphyllou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:138: 112821-112821 被引量:115
标识
DOI:10.1016/j.eswa.2019.112821
摘要

Abstract Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts, they can be considered as expert systems in medicine. Furthermore, CAD systems in medicine may process clinical data that can be complex and/or massive in size. They do so in order to infer new knowledge from data and use that knowledge to improve their diagnostic performance over time. Therefore, such systems can also be viewed as intelligent systems because they use a feedback mechanism to improve their performance over time. The main aim of the literature survey described in this paper is to provide a comprehensive overview of past and current CAD developments. This survey/review can be of significant value to researchers and professionals in medicine and computer science. There are already some reviews about specific aspects of CAD in medicine. However, this paper focuses on the entire spectrum of the capabilities of CAD systems in medicine. It also identifies the key developments that have led to today's state-of-the-art in this area. It presents an extensive and systematic literature review of CAD in medicine, based on 251 carefully selected publications. While medicine and computer science have advanced dramatically in recent years, each area has also become profoundly more complex. This paper advocates that in order to further develop and improve CAD, it is required to have well-coordinated work among researchers and professionals in these two constituent fields. Finally, this survey helps to highlight areas where there are opportunities to make significant new contributions. This may profoundly impact future research in medicine and in select areas of computer science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCMay发布了新的文献求助20
刚刚
万能图书馆应助Pendulium采纳,获得10
1秒前
科目三应助杨立胜采纳,获得10
1秒前
zzz完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
慕青应助古木采纳,获得10
2秒前
3秒前
懦弱的沛芹完成签到,获得积分10
4秒前
5秒前
天天快乐应助霸气的南晴采纳,获得10
5秒前
爱学习的叭叭完成签到,获得积分10
5秒前
桐桐应助han采纳,获得10
6秒前
future发布了新的文献求助10
6秒前
miao完成签到,获得积分10
6秒前
ieeat发布了新的文献求助10
8秒前
8秒前
8秒前
小二郎应助PP采纳,获得10
9秒前
洛绮云完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
10秒前
orixero应助许xu采纳,获得10
10秒前
ZZJ111发布了新的文献求助20
10秒前
乐辰发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
糖不太甜完成签到,获得积分10
12秒前
EVEN发布了新的文献求助10
12秒前
13秒前
科研欣路完成签到,获得积分10
13秒前
搜集达人应助九陌采纳,获得10
14秒前
杨立胜发布了新的文献求助10
14秒前
14秒前
猫小猪发布了新的文献求助10
15秒前
huangr123完成签到 ,获得积分10
16秒前
han发布了新的文献求助10
17秒前
17秒前
18秒前
wanci应助猫猫无敌采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400