A systematic survey of computer-aided diagnosis in medicine: Past and present developments

计算机科学 数据科学 人工智能
作者
Juri Yanase,Evangelos Triantaphyllou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:138: 112821-112821 被引量:115
标识
DOI:10.1016/j.eswa.2019.112821
摘要

Abstract Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts, they can be considered as expert systems in medicine. Furthermore, CAD systems in medicine may process clinical data that can be complex and/or massive in size. They do so in order to infer new knowledge from data and use that knowledge to improve their diagnostic performance over time. Therefore, such systems can also be viewed as intelligent systems because they use a feedback mechanism to improve their performance over time. The main aim of the literature survey described in this paper is to provide a comprehensive overview of past and current CAD developments. This survey/review can be of significant value to researchers and professionals in medicine and computer science. There are already some reviews about specific aspects of CAD in medicine. However, this paper focuses on the entire spectrum of the capabilities of CAD systems in medicine. It also identifies the key developments that have led to today's state-of-the-art in this area. It presents an extensive and systematic literature review of CAD in medicine, based on 251 carefully selected publications. While medicine and computer science have advanced dramatically in recent years, each area has also become profoundly more complex. This paper advocates that in order to further develop and improve CAD, it is required to have well-coordinated work among researchers and professionals in these two constituent fields. Finally, this survey helps to highlight areas where there are opportunities to make significant new contributions. This may profoundly impact future research in medicine and in select areas of computer science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
陆上行舟应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
田田完成签到,获得积分10
3秒前
Baneyhua发布了新的文献求助10
4秒前
17808352679完成签到,获得积分10
6秒前
脑洞疼应助JJ采纳,获得10
8秒前
youngyang完成签到 ,获得积分10
12秒前
gar完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
SSS给SSS的求助进行了留言
15秒前
15秒前
微光发布了新的文献求助10
15秒前
爆米花应助迷路尔曼采纳,获得10
16秒前
小二郎应助武狼帝采纳,获得10
16秒前
azorworld6发布了新的文献求助10
16秒前
18秒前
传奇3应助豌豆加树桩采纳,获得10
19秒前
卓梨发布了新的文献求助10
19秒前
lihongjie发布了新的文献求助10
19秒前
微光完成签到,获得积分10
21秒前
霸气梦菲完成签到 ,获得积分10
24秒前
JJ发布了新的文献求助10
24秒前
momo完成签到,获得积分10
24秒前
豌豆加树桩完成签到,获得积分10
28秒前
中和皇极应助zxh123采纳,获得10
29秒前
30秒前
32秒前
David发布了新的文献求助10
35秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462675
求助须知:如何正确求助?哪些是违规求助? 3056170
关于积分的说明 9050910
捐赠科研通 2745799
什么是DOI,文献DOI怎么找? 1506591
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695693